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Statistics of velocity fluctuations arising from a random distribution of point vortices:
The speed of fluctuations and the diffusion coefficient

Pierre-Henri Chavanis* and Clément Sire†

Laboratoire de Physique Quantique (UMR C5626 du CNRS), Universite´ Paul Sabatier, 118 route de Narbonne,
31062 Toulouse Cedex 4, France

~Received 4 November 1999!

This paper is devoted to a statistical analysis of the fluctuations of velocity and acceleration produced by a
random distribution of point vortices in two-dimensional turbulence. We show that the velocity probability
density function PDF behaves in a manner which is intermediate between Gaussian and Le´vy laws, while the
distribution of accelerations is governed by a Cauchy law. Our study accounts properly for a spectrum of
circulations among the vortices. In the case of real vortices~with a finite core!, we show analytically that the
distribution of accelerations makes a smooth transition from Cauchy~for small fluctuations! to Gaussian~for
large fluctuations!, probably passing through an exponential tail. We introduce a functionT(V) which gives the
typical duration of a velocity fluctuationV; we show thatT(V) behaves likeV andV21 for weak and large
velocities, respectively. These results have a simple physical interpretation in the nearest neighbor approxima-
tion, and in Smoluchowski theory concerning the persistence of fluctuations. We discuss the analogies with
respect to the fluctuations of the gravitational field in stellar systems. As an application of these results, we
determine an approximate expression for the diffusion coefficient of point vortices. When applied to the
context of freely decaying two-dimensional turbulence, the diffusion becomes anomalous and we establish a
relationshipn511(j/2) between the exponent of anomalous diffusionn and the exponentj which charac-
terizes the decay of the vortex density.

PACS number~s!: 47.10.1g, 47.27.2i
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I. INTRODUCTION

A basic problem in fluid turbulence is the characterizat
of the entire stochastic variation of the velocity fieldV(r ,t)
produced by the disordered motion of the flow. The veloc
fluctuations can be described by different quantities such
their probability density function, the typical duration of th
fluctuations, and their spatial or temporal correlations.
consider a simple model of two-dimensional turbulence
which it is possible to calculate these quantities exactly
our model, the velocity is produced by a collection of po
vortices randomly distributed in the domain with unifor
probability. Point vortices behave like particles in intera
tion, and share some common features with electric cha
@1# or stars@2–5#. In particular, the problem at hand is d
rectly connected with the problem of the fluctuations of t
electric field in a gas composed of simple ions or the fl
tuations of the gravitational field produced by a random d
tribution of stars. These problems were considered by Ho
mark @6# in electrostatics and Chandrasekhar@7# and
Chandrasekhar and von Neumann@8,9# in a stellar context.
We will show that many of the methods introduced by the
authors can be extended to the case of point vortices, ev
the calculations, and the results differ due to the lower
mensionality of space (D52 instead ofD53) and the dif-
ferent nature of the interactions.

We consider a collection ofN point vortices randomly
distributed in a disk of radiusR. We assume that the vortice

*Electronic address: chavanis@irsamc2.ups-tlse.fr
†Electronic address: clement@irsamc2.ups-tlse.fr
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have a Poisson distribution, i.e., their positions are indep
dent and uniformly distributed over the entire domain. W
are particularly interested in the ‘‘thermodynamical limit’’ i
which the number of vortices and the size of the domain
to infinity (N→`,R→`) in such a way that the vortex den
sity n5N/pR2 remains finite. In this limit, the Poisson dis
tribution is shown to be stationary~see, e.g., Ref.@10#! and is
well suited to the analysis of the fluctuations. For the m
ment, the vortices have the same circulationg, but we shall
indicate later how the results can be generalized to includ
spectrum of circulations.

The velocityV occurring at a given location of the flow i
the sum of the velocitiesFi ( i 51, . . . ,N) produced by the
N vortices:

V5(
i 51

N

Fi , ~1!

Fi52
g

2p

r' i

r i
2

, ~2!

wherer i denotes the position of thei th vortex relative to the
point under consideration and, by definition,r' i is the vector
r i rotated by1p/2. Since the vortices are randomly distrib
uted, the velocityV fluctuates. It is therefore of interest t
study the statistics of these fluctuations, i.e., the probab
W(V)d2V that V lies betweenV and V1dV. We find that
this distribution behaves in a manner which is intermedi
between Gaussian and Le´vy laws: the core of the distribution
is Gaussian, with ‘‘variance’’
490 ©2000 The American Physical Society
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PRE 62 491STATISTICS OF VELOCITY FLUCTUATIONS ARISING . . .
^V2&5
ng2

4p
ln N, ~3!

while the high velocity tail decreases algebraically likeV24.
Since the ‘‘variance’’ behaves like; ln N, the thermody-
namical limit is not well defined and the results are pollut
by logarithmic corrections. Previous investigations of th
problem were carried out numerically in Refs.@11–13#.

However, we must be aware that the knowledge ofW(V)
alone does not provide us with all the necessary informa
concerning fluctuations ofV. An important aspect of the
problem concerns thespeed of fluctuations, i.e., the typical
durationT(V) of the velocity fluctuationV. This requires the
knowledge of the bivariate probabilityW(V,A)d2Vd2A to
measure simultaneously a velocityV with a rate of change

A5
dV

dt
5(

i 51

N

ci , ~4!

ci52
g

2p S v' i

r i
2

2
2~r i•vi !r' i

r i
4 D , ~5!

wherevi5dr i /dt is the velocity of vortexi. Then the dura-
tion T(V) can be estimated by the formula

T~V!5
uVu

A^A2&V

, ~6!

where

^A2&V5

E W~V,A!A2d2A

W~V!
~7!

is the mean square acceleration associated with a velo
fluctuation V. A similar quantity was introduced in Refs
@8,9# in a stellar context. We find that the distribution of th
accelerations is governed by a Cauchy law, and that the t
cal durationT(V) of a velocity fluctuationV behaves likeV
for V→0 and V21 for V→`. We also establish that th
average duration of the velocity fluctuations is

^T&;
1

ngAln N
. ~8!

These results can be understood in the ‘‘nearest neigh
approximation,’’ in which the most proximate vortex plays
prevalent role. In this approximation, the determination
the speed of fluctuations can be deduced from the theor
Smoluchowski@14# concerning the mean lifetime of a sta
with X particles.

In terms of the previous quantities, we can estimate
diffusion coefficient of point vortices by the formula

D5
1

4 E T~V!W~V!V2d2V. ~9!

We find that

D;gAln N, ~10!
n
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i-
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and we discuss qualitatively how the formation of ‘‘pairs
modifies the results of our study. In the context of free
decaying two-dimensional turbulence, the diffusion coe
cient is time dependent~since the circulation of a vortex
increases as a result of successive mergings!, and the diffu-
sion is anomalous. From Eq.~10!, we establish a relationship

n511
j

2
~11!

between the exponent of anomalous diffusionn and the ex-
ponentj which characterizes the decay of the vortex dens
This relation is in good agreement with laboratory expe
ments~Hansenet al. @15#! and numerical simulations~Sire
and Chavanis@16#!.

We indicate how our results are modified when we allo
for a spectrum of circulations among the vortices. This is
important generalization, since decaying two-dimensio
~2D! turbulence possesses a continuous distribution of vo
ces. We show that the distribution of velocity and accele
tion are only slightly modified by the polydispersity of th
vortices, and we justify the validity of previous compariso
of full numerical simulations with vortex models that ig
nored this difference~e.g., Ref.@11#!.

Finally, we generalize our results to the case of vor
‘‘blobs’’ with a finite core. We show that the natural cutoff a
r 5a, the vortex radius, removes the algebraic tail of t
velocity distribution. Further, we analytically show that th
distribution of accelerations makes a smooth transition fr
Cauchy~for small fluctuations! to Gaussian~for large fluc-
tuations!. It is likely that in between the distribution passe
through anexponential tailas observed numerically in Re
@12# for the velocity gradients.

II. STATISTICS OF VELOCITY FLUCTUATIONS

A. General expression forW„V…

We shall now obtain the distributionWN(V) of the veloc-
ity V produced byN point vortices randomly distributed in
disk of radiusR with uniform probability. To avoid a pos-
sible solid rotation, we shall assume that the system is ‘‘n
tral,’’ the circulation of the vortices taking only two value
1g and2g in equal proportion. Since a vortex with circu
lation 2g located inr produces the same velocity as a vo
tex with circulation1g located in2r , and since the vortices
are randomly distributed over the entire domain with u
form probability, the group of vortices with negative circu
lation is statistically equivalent to the group of vortices wi
positive circulation. We can therefore proceed as if th
were a single species of particles but no solid rotation. Si
we shall ultimately letR→`, we can assume without loss o
generality thatV is calculated at the center of the domain

Under these circumstances, the distributionWN(V) can be
expressed as

WN~V!5E )
i 51

N

t~r i !d
2r idS V2(

i 51

N

Fi D , ~12!

wheret(r i)d
2r i governs the probability of occurrence of th

i th point vortex at positionr i . In writing this expression, we
have assumed that the vortices are identical and uncorrela
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Now, using a method originally due to Markov, we expre
the d function appearing in Eq.~12! in terms of its Fourier
transform:

d~x!5
1

~2p!2 E e2 i r•xd2r. ~13!

With this transformation,WN(V) becomes

WN~V!5
1

4p2 E AN~r!e2 i r•Vd2r, ~14!

with

AN~r!5S E
ur u50

R

ei r•Ft~r !d2r D N

, ~15!

where we have written

F52
g

2p

r'

r 2
. ~16!

If we now suppose that the vortices are uniformly distribu
on average, then

t~r !5
1

pR2
, ~17!

and Eq.~15! reduces to

AN~r!5S 1

pR2 Eur u50

R

ei r•Fd2r D N

. ~18!

Since

1

pR2 Eur u50

R

d2r51, ~19!

we can rewrite our expression forAN(r) in the form

AN~r!5S 12
1

pR2 Eur u50

R

~12ei r•F!d2r D N

. ~20!

We now consider the limit when the number of vortices a
the size of the domain go to infinity in such a way that t
density remains finite:

N→`, R→`, n5
N

pR2
finite.

If the integral occurring in Eq.~20! increases less rapidl
thanN, then

A~r!5e2nC(r), ~21!

with

C~r!5E
ur u50

R

~12ei r•F!d2r . ~22!
s

d

d

We have dropped the subscriptN to indicate that the limit
N→`, in the previous sense, has been taken. Note thatA(r)
can still depend onN through logarithmic factors, so that Eq
~21! must be considered as an equivalent of Eq.~20! for large
N’s, not a true limit.

To calculateC(r) explicitly, it is more convenient to in-
troduceF as a variable of integration instead ofr . The Jaco-
bian of the transformation$r%→$F% is

I ]~r !

]~F!
I5

g2

4p2F4
, ~23!

so that

C~r!5
g2

4p2 EuFu5g/2pR

1`

~12ei r•F!
1

F4
d2F, ~24!

or, alternatively,

C~r!5
g2

4p2 EuFu5g/2pR

1`

@12cos~r•F!#
1

F4
d2F. ~25!

Choosing polar coordinates with thex axis in the direction of
r, Eq. ~25! can be transformed to

C~r!5
g2

4p2 Eg/2pR

1` dF

F3 E
0

2p

@12cos~rF cosu!#du,

~26!

whereu denotes the angle betweenr andF. Using the iden-
tity

E
0

p

cos~z cosu!du5pJ0~z!, ~27!

we obtain

C~r!5
g2

2p E
g/2pR

1`

@12J0~rF!#
dF

F3
, ~28!

or, writing x5rF,

C~r!5
g2r2

2p E
gr/2pR

1`

@12J0~x!#
dx

x3
. ~29!

Recall thatC(r) must be evaluated in the limitN,R→`,
with n5N/pR2 finite. Using the well-known expansion o
the Bessel functionJ0 for small arguments,

J0~x!512
x2

4
1o~x4!, ~30!

we have the estimate

C~r!5
g2r2

16p
lnS 4pN

ng2r2D . ~31!

Since C(r) diverges weakly withN ~logarithmically!, the
limiting process leading to formula~21! is permissible. For
r.0 andN→`, we have
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A~r!5e2(ng2/16p)ln Nr2
, ~32!

and forr→0, we obtain

A~r!5e(ng2/8p)(ln r)r2
. ~33!

The velocity distributionW(V) is simply the Fourier trans
form of A(r). We shall now derive the expression forW(V)
in the core and in the tail of the distribution.

B. Core of the distribution W„V…

For V&Vcrit(N), whereVcrit(N) is defined by formula
~50!, the contribution of smallr ’s in integral ~14! is negli-
gible, and we can use expression~32! for A(r). In that case,
the distributionW(V) is the Gaussian

W~V!5
4

ng2ln N
e2(4p/ng2ln N)V2

@V&Vcrit~N!#.

~34!

If we were to extend this distribution for all values ofV, we
would conclude that its variance

^V2&5
ng2

4p
ln N ~35!

diverges logarithmically whenN→`. This result was noted
by Jiménez@11#, Min et al. @12#, and Weisset al. @13#, who
applied a generalized form of the central limit theorem.
fact, the central limit theorem is not strictly applicable he
because the variance of the velocity created by a single
tex,

^F2&5E
ur u50

R

t~r !F2d2r5E
0

R 1

pR2

g2

4p2r 2
2prdr , ~36!

diverges logarithmically; still, the distribution ofV is Gauss-
ian @for V&Vcrit(N)#, but its ‘‘variance’’ behaves like lnN.
For V*Vcrit(N), distribution~34! breaks down because, fo
large velocities, the Fourier transform~14! is dominated by
the contribution of smallr ’s, and formula~33! must be used
instead of Eq.~32!. This implies that the high velocity tail o
the distributionW(V) decays algebraically likeV24 ~see
Sec. II C!. This algebraic tail arises because we are on
frontier between Gaussian and Le´vy laws ~see Fig. 1.1 of
Ref. @17#, and Sec. V!.

Distribution ~34! has been derived for a neutral syste
consisting in an equal number of vortices with circulati
1g and2g. In Appendix B, we extend our results to allo
for a spectrum of circulations among the vortices, still fo
neutral system. If the system is non-neutral, there is a s
rotation and the average velocity increases linearly with
distance. Therefore, at pointa, Eq. ~34! must be replaced by
,
r-

e

id
e

W~V!5
4

ng2ln N
e2(4p/ng2ln N)[V2(1/2)nga'] 2

S UV2
1

2
nga'U&Vcrit~N! D . ~37!

The velocity distribution ataÞ0 differs only from the distri-
bution at the center of the domain by replacing the veloc
V by the fluctuating velocityV5V2^V&5V2 1

2 nga' . A
factor 1/2 arises in front of the average vorticityng because,
for a solid rotation, the vorticity is twice the angular velocit

C. High velocity tail of the distribution W„V…

We shall now determine the behavior of the distributi
W(V) for V→`. Introducing polar coordinates with thex
axis in the direction ofV, and using Eq.~21!, Eq.~14! can be
transformed to

W~V!5
1

2p2 E0

p

duE
0

1`

e2 irV cosue2nC(r)rdr. ~38!

With the change of variablesz5rV andt52cosu, Eq. ~38!
can be rewritten

W~V!5
1

2p2V2
ReeE

21

11 dt

A12t2 E0

1`

eizte2nC(z/V)zdz.

~39!

In this expression,t andz are real, and the domains of inte
grationt0 :21<t<1 andz0 :0<z,1` are taken along the
real axis. Under these circumstances, the integral is not c
vergent if we expand the quantity exp„2nC(z/V)… in a
power series ofz/V, for V→1`, and evaluate the integra
term by term. However, regardingz and t as complex vari-
ables, it is possible to choose paths of integration alo
which this expansion will converge.

We shall first carry out the integration onz, for a fixedt.
It will therefore be possible to choose the~complex! integra-
tion paths forz dependent ont. The integration paths are
modified as follows:t0 is replaced byt, the semicircle with
radius unity lying in the domain Im(t)>0. Therefore, arg(t)
varies fromp to 0 whent moves from21 to 11. On the
other hand,z0 is replaced byzv t

, the line starting from the
origin and forming an angle

v t5
1

8 S p

2
2arg~ t ! D ~40!

with the real axis. Whent moves from21 to 11, v t varies
from 2p/16 to 1p/16. For uzu→`, according to Eq.~32!,
we have

e2nC(z/V)5e2(ng2/16p)ln N(z2/V2). ~41!

Since the argument ofz2 is between2p/8 andp/8, its real
part is always positive, and the convergence of Eq.~39! is
undisturbed. On the other hand, the argument ofizt is equal
to p/211/8@p/22arg(t)#1arg(t), and lies between 9p/16
and 23p/16. Therefore, the real part ofizt is always nega-
tive, and the functioneizt decays exponentially to zero a
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uzu→`. Therefore, with the new paths of integrationt and
zv t

, it is possible to expand the integrand of Eq.~39! in

power series ofz/V, for V→`, and integrate term by term
Whenz/V→0, we have, according to Eq.~33!,

e2nC(z/V)5e(ng2/8p)ln(z/V)(z2/V2), ~42!

and we can write

W~V!5
1

2p2V2
ReE

t

dt

A12t2 Ezv t

eizt

3F11
ng2

8p
lnS z

VD z2

V2
1•••.Gzdz. ~43!

Since this integral is convergent along any line on which
real part of izt is negative, we can replace the integrati
pathzv t

by the linezc t
, forming an angle

c t5
p

2
2arg~ t ! ~44!

with the real axis. On this new integration pathizt52y (y
real>0), and we obtain

W~V!52
1

2p2V2
ReE

21

11 dt

A12t2 E0

1`

e2y

3F12
ng2

8p
lnS iy

V D 1

t2

y2

V2
1

ng2

8p

ln t

t2

y2

V2
1•••G y

t2
dy,

~45!

where we recall thatt is a complex variable, and the integr
tion has to be performed over the semicircle of radius un
lying on the domain Im(t)>0. Writing t5eiu, we find that

E
21

11 dt

t2A12t2
50, E

21

11 dt

t4A12t2
50,

E
21

11 ln t

t4A12t2
dt52

2p

3
. ~46!

Therefore,

W~V!5
ng2

24p2V4 E0

1`

e2yy3dy. ~47!

In this expression, we recognize theG function

G~n11!5E
0

1`

e2yyndy, ~48!

with n53. Its value isG(4)56, and we finally obtain

W~V!5
ng2

4p2V4
@V*Vcrit~N!#. ~49!
e

y

Therefore, for sufficiently large values ofV, the velocity dis-
tribution W(V) decays algebraically, likeV24. In Sec. V, we
give a physical interpretation of this result in terms of t
nearest neighbor approximation.

From Eqs.~34! and~49!, we can estimate the value of th
velocity Vcrit(N) for which the distributionW(V) departs
from the Gaussian.Vcrit(N) is obtained by seeking the poin
where the two regimes~34! and ~49! connect to each other
Neglecting subdominant terms in lnN, one simply finds

Vcrit~N!;S ng2

4p
ln ND 1/2

ln1/2~ ln N!. ~50!

This result shows that the convergence to a pure Gaus
distribution is extremely slow, withN as emphasized in Refs
@11–13#. Since the distributionW(V) decreases likeV24 for
V→`, the variance of the velocity diverges logarithmicall

Note, finally, that the distribution ofVx , thex component
of the velocity, is

W~Vx!5
2

Ang2ln N
e24pVx

2/ng2lnN @Vx&Vcrit~N!#,

~51!

W~Vx!5
ng2

8pVx
3 @Vx*Vcrit~N!#. ~52!

D. Formation of ‘‘pairs’’

The previous results should be all the more valid if t
velocity V is calculated at a fixed point of the domain.
such a case, there is no restriction on the possible valuesV
since a vortex can approach this point with no limit produ
ing extremely large velocities. The situation is different ifV
is now the velocity experienced by a ‘‘test’’ vortex. Indee
if a ‘‘field’’ vortex approaches the test vortex below a certa
distance, then a ‘‘pair’’ will form, and our treatment, whic
ignores the correlations between vortices, will clearly bre
down. These pairs have been observed and studied num
cally by Weisset al. @13#.

We can simply estimate the typical separation bel
which a pair will form by comparing the velocity produce
by a single vortexg/2pr with the typical velocityVtyp
5@(ng2/4p)ln N#1/2 produced by the field@see Eq. 35#. This
yields

dpair~N!5~pn ln N!21/2, ~53!

a distance slightly smaller than the interparticle distance b
factor ;1/Aln N. In the mathematical limitN→`, there is
no pair, sincedpair→0. This result is in agreement with th
stationarity of the Poisson process whenN→`: if the vorti-
ces are initially uncorrelated and uniformly distributed, th
will remain uncorrelated and uniformly distributed. How
ever, the convergence is extremely slow withN, and close
pairs will always form in realistic situations. As emphasiz
by Weiss et al. @13#, a system of 103–105 vortices has a
behavior which is a combination of both low-dimension
behavior, i.e., closed pairs, and high-dimensional beha
described by traditional stochastic processes.
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A pair can be either a ‘‘binary’’~rapidly rotating around
its center of vorticity!, when two vortices of the same sig
are bound together, or a ‘‘dipole’’~translating or rotating!,
when two vortices of opposite sign pair off. Of course, bin
ries and dipoles behave very differently. If the vortex is e
gaged in a binary with a long correlation time, then, f
practical purposes, the relevant velocity to consider is no
own velocity ~which has a rotating component!, but rather
the velocity of the center of vorticity which is induced by th
rest of the system. Therefore, a binary simply behaves lik
single point vortex with a larger circulation and a relative
slow velocity ~otherwise this means that the binary is its
engaged in a pair!. It may be noted that, in the case of re
vortices~with a finite core!, the formation of binaries is re
placed by merging events. On the other hand, a dipole mo
by itself and behaves like a kind of particle undergoing f
ballistic motion. Its velocity may be large but, since it crea
a dipolar velocity field, the previous results cannot be
plied directly, and an appropriate treatment is required.

We therefore expect that the velocity distributions~34!
and ~49!, which ignore correlations between vortices, w
break down forV@Vcrit(N) since, in that case, the velocit
is entirely due to the nearest neighbor, and pairs form. In
following, we shall account for this failure by introducing
cutoff at someVmax, i.e.,

W~V!50 ~V.Vmax!. ~54!

This is the simplest modification that we can make to
count for the formation of pairs at large velocities. Likewis
in the stellar context, the formation of binaries alters t
results of the stochastic analysis at large field strengths.

III. STATISTICS OF ACCELERATIONS

A. General formula for W„V,A…

Here we are concerned with a calculation of the bivari
probability WN(V,A) to measure simultaneously a veloci
V with a rate of changeA5dV/dt. According to Eqs.~1!
and~4!, V andA are the sum ofN random variablesFi and
ci depending on the positionsr i and velocitiesvi of the point
vortices. However, unlike material particles, the variab
$r i ,vi%, for different i ’s, are not independent because t
velocities of the vortices are determined by the configurat
$r i% of the system as a whole. However, for our purpose, i
probably a reasonable approximation to neglect these co
lations and treat$r i ,vi% ( i 51, . . . ,N) as independent vari
ables. We shall only describe qualitatively how the format
of pairs affects our results.

When this decorrelation hypothesis is implemented
straightforward generalization of the method used in S
II A yields

WN~V,A!5
1

16p4 E AN~r,s!e2 i (r•V1s•A)d2rd2s,

~55!

with
-
-

ts

a

es
t
s
-

e

-
,
e

e

s

n
s
e-

n

a
c.

AN~r,s!5S E
ur u50

R E
uvu50

1`

t~r ,v!ei (r•F1s•c)d2rd2vD N

,

~56!

where we have defined

F52
g

2p

r'

r 2
, ~57!

c52
g

2p S v'

r 2
2

2~r•v!r'

r 4 D , ~58!

and wheret(r ,v) denotes the probability that a vortex be
r with velocity v. According to our initial assumptions, th
vortices are distributed uniformly on average, andt(r ) is
given by Eq.~17!. On the other hand, their velocity distribu
tion t(v) is given by Eqs.~34! and~49! of Sec. II. However,
due to the formation of pairs, this distribution must be mo
fied at large velocities~see Sec. II D!. Instead of introducing
a sharp cutofft(v)50 at v.vmax, we shall assume for
convenience that the Gaussian distribution~34! is valid for
all velocities. Therefore, the probability that a vortex be inr
with velocity v is

t~r ,v!5
1

pR2

4

ng2ln N
e2(4p/ng2ln N)v2

q. ~59!

It is remarkable that distribution~59! is formally equivalent
to the Maxwell-Boltzmann statistics of material particles
equilibrium. Owing to this analogy, we can interpret the va
ance

v̄25
ng2

4p
ln N ~60!

as a kind of kinetic ‘‘temperature.’’ More generally, the m
ment of orderp of the velocity is

v p̄5S ng2ln N

4p D p/2

GS p

2
11D , ~61!

where theG function is defined by Eq.~48!. In particular

v̄5S ng2

16
ln ND 1/2

. ~62!

Recall that the distribution~59! is valid only for a neutral
system made of an equal number of vortices with circulat
1g and2g ~if the system is non-neutral, we must accou
for a solid rotation!. Since a vortex with circulation2g,
located inr and moving with velocityv, produces the same
velocity V and accelerationA as a vortex with circulation
1g located in2r and moving with velocityÀv, and since
the vortices are randomly distributed with a uniform pro
ability and isotropic velocity distribution, the two groups o
vortices are statistically equivalent. Therefore, as in Sec
we can proceed as if we had a single type of vortex w
circulation g and no solid rotation. In Appendix B, we ex
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tend our results to allow for a spectrum of circulatio
among the vortices and an arbitrary isotropic distribution
the velocityt(uvu).

Substituting expression~59! for t(r ,v) into Eq. ~56!, we
obtain

AN~r,s!5S 1

pR2 Eur u50

R E
uvu50

1` 4

ng2ln N

3e2(4p/ng2ln N)v2
ei (r•F1s•c)d2rd2vD N

.

~63!

As in Sec. II A, it is more convenient to useF and c as
variables of integration rather thanr andv. The Jacobian of
the transformation$r ,v%→$F,c% is

I ]~r ,v!

]~F,c!
I5

g4

16p4F8
. ~64!

We must next expressv5uvu in terms of our new variables
F and c. According to Eqs.~57! and ~58!, we haveF
5g/2pr andc5gv/2pr 2. Hence

v5
g

2p

c

F2
. ~65!

Thus, in these new variables, the expression forAN(r,s)
becomes

AN~r,s!5S 1

pR2 EuFu5g/2pR

1` E
ucu50

1` 4

ng2ln N

3e2(1/np ln N)(c2/F4)ei (r•F1s•c)

3
g4

16p4F8
d2Fd2cD N

. ~66!

The integral with respect toc is Gaussian and is readil
evaluated. We are left with

AN~r,s!5S 1

pR2 EuFu5g/2pR

1`

ei r•Fe2pn ln Ns2F4/4

3
g2

4p2F4
d2FD N

. ~67!

We verify that

1

pR2 EuFu5g/2pR

1` g2

4p2F4
d2F51. ~68!

Hence, we can rewrite Eq.~67! in the form
f AN~r,s!5S 12
1

pR2 EuFu5g/2pR

1`

~12ei r•F

3e2pn ln Ns2F4/4!
g2

4p2F4
d2FD N

. ~69!

We shall now consider the limitN,R→` with n
5N/pR2 finite. If the integral appearing in Eq.~69! in-
creases less rapidly thanN, then

A~r,s!5e2nC(r,s), ~70!

with

C~r,s!5
g2

4p2 EuFu5g/2pR

1`

~12ei r•Fe2pn ln Ns2F4/4!
1

F4
d2F.

~71!

As in Sec. II A, the functionA(r,s) represents an equivalen
of AN(r,s) for largeN, not a true limit. It can therefore stil
depend onN through logarithmic factors.

After introducing polar coordinates and integrating ov
the angular variable using Eq.~27!, we arrive at

C~r,s!5
g2

2p E
g/2pR

1`

~12J0~rF!e2pn lnNs2F4/4!
dF

F3
.

~72!

Equations~55!, ~70!, and ~72! formally solve the problem,
but the integrals look difficult to calculate explicitly. How
ever, if we are only interested in the moments ofA for a
given V ~or in the moments ofV for a givenA), we only
need the asymptotic expansion ofA(r,s) for usu→0
(uru→0). This problem will be considered in Sec. III C. Fir
we shall derive the unconditional distribution of the acc
eration.

B. Cauchy distribution for A

According to Eq.~55!, we clearly have

W~A!5
1

16p4 E A~r,s!e2 i (r•V1s•A)d2rd2sd2V.

~73!

Using Eq.~13!, the foregoing expression forW(A) reduces
to

W~A!5
1

4p2 E A~s!e2 i s•Ad2s, ~74!

where we have writtenA(s) for A(0,s). Hence, according
to Eqs.~70! and ~72!, we obtain

A~s!5e2nC(s), ~75!

with

C~s!5
g2

2p E
0

1`

~12e2pn ln Ns2F4/4!
dF

F3
. ~76!
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Following the usual prescription, we have letR→`, since
the integral is convergent whenF→0. Integrating by parts
we obtain

C~s!5
g2

8
An ln Ns. ~77!

Hence

A~s!5e2g2n3/2/8Aln Ns. ~78!

The distributionW(A) is simply the Fourier transform of th
exponential function~78!. This is the 2D Cauchy distribu
tion:

W~A!5
32

pn3g4ln N

1

S 11
64A2

n3g4ln N
D 3/2. ~79!

The Cauchy distribution is a particular Le´vy law. As such, it
decays algebraically for largeuAu ’s, according to

W~A!;
g2n3/2Aln N

16pA3
~A→`!. ~80!

This result has a clear physical interpretation in the nea
neighbor approximation~see Sec. V!. Only the moments of
orderp,1 of the acceleration exist, and we have the gene
expression

^Ap&5S n3/2g2Aln N

8 D p 1

Ap
GS 12p

2 DGS 11
p

2D . ~81!

Note, finally, that the distribution ofAx , thex component of
the acceleration, is the ordinary 1D Cauchy law

W~Ax!5
8

pn3/2g2Aln N

1

11
64Ax

2

n3g4ln N

. ~82!

We can show, furthermore, that the distribution of accele
tions is related to the distribution of velocity gradientsdV ~in
preparation!. This is to be expected sinceA5dV/dt.

C. Moments ŠA2
‹V and ŠV2

‹A

Let us introduce a Cartesian system of coordinates,
denote by$Am% the different components ofA relative to that
frame. The average value ofAmAn for a given velocityV is
defined by

^AmAn&V5
1

W~V!
E W~V,A!AmAnd2A. ~83!

According to Eq.~55!, it can be written
st

al

-

d

W~V!^AmAn&V5
1

16p4 E A~r,s!

3e2 i (r•V1s•A)AmAnd2rd2sd2A,

~84!

or, equivalently,

W~V!^AmAn&V52
1

16p4 E A~r,s!
]2

]sm]sn

3$e2 i (r•V1s•A)%d2rd2sd2A. ~85!

Integrating by parts, we obtain

W~V!^AmAn&V52
1

16p4 E ]2A

]sm]sn
~r,s!

3e2 i (r•V1s•A)d2rd2sd2A. ~86!

Using identity~13!, we can readily carry out the integratio
on A ands, to finally obtain

W~V!^AmAn&V52
1

4p2 E ]2A

]sm]sn
~r,0!e2 i r•Vd2r.

~87!

Since the characteristic functionA(r,s) is isotropic in each
of its variables@see Eqs.~70! and~72!#, the tensor̂ AmAn&V
is diagonal, and can be expressed as

^AmAn&V5
1

2
^A2&Vdmn , ~88!

where^A2&V is given by

W~V!^A2&V52
1

p2 E ]A

]~s2!
~r,0!e2 i r•Vd2r. ~89!

We therefore need the behavior ofA(r,s) for usu→0, or
according to Eq.~70! the behavior ofC(r,s) for usu→0.
Introducing the functionC(r) defined in Sec. II A@see Eq.
~28!#, and using Eq.~72!, we can write

C~r,s!5C~r!1F~r,s!, ~90!

with

F~r,s!5
g2

2p E
0

1`

J0~rF!~12e2pn ln Ns2F4/4!
dF

F3
.

~91!

We have letR→`, since the integral is convergent whe
F→0. In terms of this new function, the expression f
^A2&V can be rewritten

W~V!^A2&V5
n

p2 E e2nC(r)
]F

]~s2!
~r,0!e2 i r•Vd2r.

~92!

It is shown in Appendix A that
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]F

]~s2!
~r,0!5

pn

4
g2ln Nd~r!, ~93!

where d stands for the Diracd function. Substituting the
foregoing expression in Eq.~92!, we obtain

W~V!^A2&V5
n2g2

4p
ln N. ~94!

Therefore,^A2&V behaves like the inverse of the veloci
distributionW(V). Combining Eqs.~94!, ~34!, and~49!, we
obtain

^A2&V5
n3g4

16p
~ ln N!2e(4pV2/ng2ln N) @V&Vcrit~N!#,

~95!

^A2&V5np ln NV4 @V*Vcrit~N!#. ~96!

For V→`, ^A2&V behaves likeV4. This result finds a simple
physical interpretation in the nearest neighbor approxima
~see Sec. V!.

By a similar procedure, we can calculate the variance
the velocity for an assigned rate of change. We find

^V2&A5
ng2

4p
ln N @A&Acrit~N!#, ~97!

^V2&A5
2A

pAn ln N
@A*Acrit~N!#. ~98!

For moderate values ofA, the variancêV2&A is independent
of A, and coincides with formula~35!. For large fluctuations
result~98! can be recovered in the nearest neighbor appr
mation ~see Sec. V!. The crossover between the two dist
butions~97! and ~98! occurs at

Acrit~N!;
n3/2g2

8
~ ln N!3/2. ~99!

IV. SPEED OF FLUCTUATIONS AND THE DIFFUSION
COEFFICIENT

A. Mean lifetime of a velocity fluctuation V

On the basis of very general considerations~see, e.g., Ref.
@13#!, we would expect that the typical duration of the velo
ity fluctuations be

Ttyp;
d

A^V2&
. ~100!

This corresponds to the time needed by a vortex with typ
velocity A^V2& to cross the interparticle distanced;n21/2.
Using expression~35! for ^V2&, we find

Ttyp;
1

ngAln N
. ~101!
n

f

i-

-

l

Apart from the logarithmic correction, this formula can b
obtained by direct dimensional analysis. However, if we d
fine the mean lifetime of a stateV by the formula

T~V!5
uVu

A^A2&V

, ~102!

the theory developed along the previous lines enables u
obtain a more precise characterization of the speed of fl
tuations depending on their intensity. This definition is co
sistent with the definition introduced in Refs.@8,9# in the
context of stellar dynamics. Of course, Eq.~102! is just an
order of magnitude, but it should reasonably well account
the dependence on the speed of fluctuations withV. Using
Eqs.~95! and ~96!, we find, explicitly,

T~V!5
4ApV

n3/2g2ln N
e2(2p/ng2ln N)V2

@V&Vcrit~N!#,

~103!

T~V!5
1

Apn ln N

1

V
@V*Vcrit~N!#. ~104!

For weak and large fluctuations,T(V) decreases to zero like
V and V21, respectively. These asymptotic behaviors a
consistent with the theory developed by Smoluchowski@14#
in his general investigation on fluctuation phenomena~see
Sec. V C!. These results~and those of Sec. III! should be all
the more valid ifV is calculated at a fixed point. By contras
if V denotes the velocity experienced by a test vortex,
expect some discrepancies at largeV’s due to the formation
of pairs. In such a case, the correlation time can be extrem
long ~in particular for binaries!.

The average duration of the fluctuations is defined by

^T&5E
0

1`

T~V!W~V!2pVdV. ~105!

To leading order in lnN @i.e., extending Eqs.~34! and ~103!
to all V’s#, we obtain

^T&5
4

3 S p

6 D 1/2 1

ngAln N
, ~106!

in good agreement with estimate~101! based on genera
physical grounds.

B. Diffusion coefficient

According to the previous discussion, we can characte
the fluctuations of the velocity of a point vortex~or a passive
particle! by two functions: a functionW(V) which governs
the occurrence of the velocityV, and a functionT(V) which
determines the typical time during which the vortex mov
with this velocity. Since the velocity fluctuates on a typic
time Ttyp5d/A^V2&, which is much smaller than the dy
namical timeTD5R/A^V2& needed by the vortex to cross th
entire domain, the motion of the vortex will be essentia
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stochastic. If we denote byP(r ,t) the probability density
that the particle be found inr at time t, then P(r ,t) will
satisfy the diffusion equation

]P

]t
5DDP. ~107!

If the particle is atr5r0 at time t50, the solution of Eq.
~107! is clearly

P~r ,tur0!5
1

4pDt
e2(ur2r0u2)/4Dt, ~108!

whereD is the diffusion coefficient. The mean square d
placement that the particle is expected to suffer during
interval of timeDt, large with respect to the fluctuation tim
Ttyp , is

^~Dr !2&54DDt. ~109!

We can obtain another expression for^(Dr )2& in terms of the
functionsW(V) and T(V) defined in the previous section
Indeed, dividing the interval

Dr5E
t

t1Dt

V~ t8!dt8 ~110!

into a succession of discrete increments in position w
amountT(Vi)V i , we readily establish that

^~Dr !2&5^T~V!V2&Dt. ~111!

Combining Eqs.~109! and ~111! we obtain an alternative
expression for the diffusion coefficient in the form

D5
1

4 E T~V!W~V!V2d2V. ~112!

Substituting forT(V) andW(V) in the foregoing expression
we obtain, to leading order in lnN,

D5
1

72S 6

p D 1/2

gAln N. ~113!

We should not give too much credit to the numerical fac
appearing in Eq.~113!, since definition~102! of T(V) is just
an order of magnitude. Note that the functional form ofD is
consistent with the expression

D;Ttyp^V
2&;gAln N ~114!

that one would expect on general physical grounds. W
et al. @13# proposed describing the motion of the vortices
a Ornstein-Uhlenbeck process with ‘‘friction’’2V/^T& to
take into account the finite decorrelation time of the syste
The functionT(V) introduced in the present paper could
used instead of̂T&, to take into account the dependence
the decorrelation time with the strengthV of the fluctuations.

The present theory ignores the formation of pairs since
have formally introduced a cutoff at largeV’s. This cutoff is
justified for binaries since, as we have already explained,
relevant velocity to consider is the velocity of the center
vorticity, not the velocity of the individual vortices engage
-
n

h

r

ss

.

f

e

e
f

in the pair. This is not the case for dipoles which can ma
relatively long jumps from one point to another with an a
most ballistic motion. Weisset al. @13# proposed interpreting
these jumps in terms of Le´vy walks responsible for anoma
lous diffusion. Therefore, the present theory should prov
reliable results only for relatively short times. For timest
@TD , the pairs must be taken into account and anomal
diffusion will ensue. The case of passive particles is not
different. A passive particle is advected by the other vortic
but has no influence on their motion. However, passives
become trapped in the vicinity of a vortex undergoing fa
dipolar motion, and also experience Le´vy walks.

The previous results remain valid for a non-neutral syst
rotating uniformly, provided that the velocityV is replaced
by the fluctuating velocityV5V2^V&. In particular, expres-
sions ~106! and ~113! for ^T& and D are unchanged. For a
differential rotation, the fluctuation time is related to the l
cal shearS, as investigated by Chavanis@3# using an ap-
proximation in which the point vortices are simply tran
ported by the mean flow. Therefore, the present theory g
the value of the fluctuation time in regions where the sh
cancels out. Of course, a more general calculation sho
take into account the effect of both the shear and the dis
sion of particles, but this will not be considered here. No
also that when the system is inhomogeneous, the point
tices are subjected to asystematic drift@3# in addition to their
diffusive motion. This drift may be responsible for the org
nization of point vortices at ‘‘negative temperatures’’@18#.

C. Application to 2D decaying turbulence

Let us consider a collection of vortices of sizea, vorticity
v, and densityn. Due to merging events, their size increas
with time as the density decreases. The typical core vorti
v remains constant during the course of the evolution
suggested in Refs.@19–21#, and observed experimentally i
Ref. @15#. These authors found that the density decrease
n;t2j with j'0.7. As the energyE;Nv2a4 is conserved
throughout the merging process, the typical vortex radiu
a;tj/4. Since the average distance between vortices, of o
d;tj/2 increases more rapidly than their size, the point v
tex model should provide increasing accuracy. We can th
fore expect that the vortices will diffuse with a coefficie
D;g @see Eq.~113!#, whereg;va2 is their circulation~we
ignore logarithmic corrections!. If the diffusion coefficient
were constant, then the dispersion of the vortices

^r 2&;Dt ~115!

would increase linearly with time, as in ordinary Brownia
motion. However, sinceD varies with time according to

D;va2;tj/2, ~116!

we expect anomalous diffusion, i.e.,

^r 2&;tn, ~117!

with nÞ1. Substituting Eq.~116! into Eq. ~115!, we obtain
the following relation betweenn andj:

n511
j

2
. ~118!
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This expression differs from formula (19) of Ref.@15#
because their estimate ofD is different. These authors est
mate the diffusion coefficient byD;tmerĝ V2&, wheretmerg
is the average time between two successive mergings
given vortex. By a simple cross section argument, they
tained tmerg;1/(nA^V2&a), which is larger thant f luct

;d/A^V2& by a factord/a. This shows that the merging tim
is not the relevant correlation time to consider in the dif
sion process. In fact, usingj'0.7, formula~118! leads to
n'1.35, in better agreement with the experimental valun
'1.3 (n'1.4 for passive particles! than their relationn51
1(3j/4), leading ton'1.53. Formula~118! is also in per-
fect agreement with the numerical simulations of Ref.@16#.

V. NEAREST-NEIGHBOR APPROXIMATION

A. Importance of the nearest neighbor

The velocityV and accelerationA experienced by a tes
vortex ~or occurring at a fixed point! are the sum ofN ran-
dom variablesFi andci produced by all the vortices prese
in the system@see Eqs.~1! and~4!#. In each sum, the highes
term is due to the nearest neighbor, at an average dist
d;n21/2 from the point under consideration. This single vo
tex creates a typical velocity and acceleration:

VNN
2 ;S g

2pdD 2

;
g2

4p2

N

pR2
, ~119!

ANN
2 ;v 2̄S g

2pd2D 2

;
g2

4p2
v 2̄S N

pR2D 2

. ~120!

It is interesting to compare the contribution of the near
neighbor with the contribution of the otherN21 vortices.
For that purpose, we estimate the typical value ofV and A
produced byall the vortices by

V2;NK g2

4p2r 2L ;NE
ur u5d

R

t~r !
g2

4p2r 2
d2r;

g2

4p

N

pR2
ln N,

~121!

A2;Nv 2̄K g2

4p2r 4L ;Nv 2̄E
ur u5d

R

t~r !
g2

4p2r 4
d2r

;
g2

4p
v 2̄S N

pR2D 2

. ~122!

If the variance ofF and c were finite, the central limit
theorem would be applicable, and the variablesV and A
would scale likeAN. In that case, none of the terms in sum
~1! and ~4! would have a dominant contribution, and th
scalingAN would simply reflect thecollectivebehavior of
the system. This is not the case, however, in the pre
situation, since the variance ofF and c diverge. The vari-
ance ofc diverges algebraically, and, thus, the accelerat
produced by all the vortices is dominated by the contribut
of the nearest neighbor. Thisindividual nature is a specific
and striking property of a Le´vy law. For a Lévy law, the sum
of N random variables behaves like the largest term@com-
pare Eqs.~122! and ~120!#. The case of the velocity is par
a
-

-

ce

t

nt

n
n

ticular because the variance ofF diverges only logarithmi-
cally. First considering Eq.~121!, and neglecting the
logarithmic correction, we observe that the velocity pr
duced by all the vortices behaves likeAN, as though the
central limit theorem were applicable. However, compar
with Eq. ~119!, we note thatAN is also the scaling of the
largest term in the sum. Therefore, the contribution of
nearest neighbor is of the same order as the contributio
the rest of the system~up to a logarithmic factor!. It is on
account of this particular circumstance that the velocity ha
behavior which is intermediate between Gaussian and L´vy
laws, as remarked upon earlier. In a sense, we can cons
that the velocity is dominated by the contribution of the ne
est neighbor, and that collective effects are responsible
logarithmic corrections.

B. Distribution due to the nearest neighbor

In light of the previous discussion, it is interesting to an
lyze in more detail the distribution of the velocity and acc
eration produced by the nearest neighbor. For that purp
we must first determine the probabilitytNN(r )dr that the
position of the nearest neighbor occurs betweenr and r
1dr. Clearly, tNN(r )dr is equal to the probability that no
vortices exist interior tor times the probability that a vortex
~any! exists in the annulus betweenr andr 1dr. Therefore, it
must satisfy an equation of the form

tNN~r !dr5S 12E
0

r

tNN~r 8!dr8D n2prdr , ~123!

wheren5N/pR2 denotes the mean density of vortices in t
disk. Differentiating with respect tor, we obtain

d

dr FtNN~r !

2pnr G52tNN~r !. ~124!

This equation is readily integrated with the conditio
tNN(r );2pnr as r→0, and we find

tNN~r !52pnre2pnr2
. ~125!

This is the distribution of the nearest neighbor in a rand
distribution of particles. From this formula, we can obta
the exact value for the ‘‘average distance’’d between vorti-
ces. By definition,

d5E
0

1`

tNN~r !rdr . ~126!

Hence

d5
1

2An
. ~127!

The probability of finding the nearest neighbor inr with
velocity v is

tNN~r ,v!5ne2pnr2 4

ng2ln N
e2(4p/ng2ln N)v2

. ~128!
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If we assume that the velocityV and the accelerationA are
entirely due to the nearest neighbor, then

WNN~V,A!d2Vd2A5tNN~r ,v!d2rd2v, ~129!

with

V52
g

2p

r'

r 2
~130!

A52
g

2p S v'

r 2
2

2~r•v!r'

r 4 D . ~131!

Since the Jacobian of the transformation$r ,v%→$V,A% is

I ]~r ,v!

]~V,A!
I5

g4

16p4V8
, ~132!

we obtain

WNN~V,A!5
g2

4p4ln N

1

V8
e2(ng2/4pV2)e2(A2/np ln NV4),

~133!

where we have usedr 5g/2pV and v5gA/2pV2. The
nearest neighbor approximation is expected to give relev
results only for large values of the velocity and the accele
tion. Thus we can make the additional approximation

WNN~V,A!5
g2

4p4ln N

1

V8
e2(A2/np ln NV4). ~134!

Integrating on the acceleration, we find

WNN~V!5
ng2

4p2V4
, ~135!

in perfect agreement with Eq.~49! valid for V*Vcrit . This
shows that the algebraic tail of the velocity distribution
produced by the nearest neighbor. This is characteristic
Lévy law. On the other hand, forV&Vcrit , the velocity dis-
tribution is Gaussian, as if the central limit theorem we
applicable. Once again, the simultaneous occurrence of
lective and individual behaviors is a manifestation of t
very peculiar nature of an interaction inr 21 in two dimen-
sions.

Integrating on the velocity, we find

WNN~A!5
g2n3/2Aln N

16pA3
, ~136!

in perfect agreement with the asymptotic behavior of
Cauchy distribution@Eq. ~80!#. We also establish that

^A2&V5np ln NV4, ~137!

^V2&A5
2A

pAn ln N
, ~138!

in complete agreement with formulas~96! and ~98!.
nt
-

a

l-

e

C. Application of Smoluchowski theory

In the nearest neighbor approximation, the duration of
velocity fluctuations can be deduced from the theory
Smoluchowski@14# concerning the persistence of fluctu
tions. This approach was used by Chandrasekhar@7# in his
elementary analysis of the fluctuations of the gravitatio
field. An account of Smoluchowski theory can be found
Ref. @22#. In the case of point vortices, it leads to the formu

T~V!5
g

4v̄

V

ng2

4p
1V2

, ~139!

whereV5g/2pr is the velocity due to the most proximat
vortex, at a distancer from the point under consideration
The Smoluchowski formula@Eq. ~139!# has the same
asymptotic behaviors as Eqs.~103! and ~104!. These
asymptotic behaviors have a clear physical meaning. W
r 5g/2pV is small, corresponding to large velocities, it
highly improbable that another vortex will enter the disk
radius r before long. By contrast, on a short time scaleT

;r / v̄;g/ v̄V, the vortex will have left the disk. Whenr
5g/2pV is large, corresponding to small velocities, th
probability that the vortex will remain alone in the disk
low. The characteristic time before another vortex enters
disk varies as the inverse of the number of vortices expec
to be present in the disk, i.e.,T;(r / v̄)(1/npr 2);V/ng v̄.
The demarcation between weak and strong fluctuations
responds toV;gn1/2, i.e. to the velocity produced by a vor
tex distantn21/2 from the point under consideration.

VI. CONCLUSION

In this paper, we have analyzed in detail the statistics
velocity fluctuations produced by a random distribution
point vortices. We have determined the velocity distributi
and the speed of fluctuations. We have also shown how s
of the results can be understood in the nearest neighbor
proximation. Our results should be accurate if the velocity
calculated at a fixed point. However, there should be s
stantial discrepancies at large velocities ifV now represents
the velocity experienced by a point vortex. This is due to
formation of pairs~binaries or dipoles! when two vortices
come into contact. If we ignore these pairs, the motion of
vortices is purely diffusive, and we determined the function
form of the diffusion coefficient. In the case of real vortice
with a finite core, the formation of binaries is replaced
merging events, and the number of vortices decreases
time. This results in anomalous diffusion. We proposed
relationship between the exponent of anomalous diffusion
and the exponentj which characterizes the decay of th
vortex density. In a future study~in preparation!, we shall be
concerned with the spatial correlations of the velocity.
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Note added.Recently we have become aware of the wo
by Kuvshinov and Schep~to appear in Phys. Rev. Lett.! on
the statistics of point vortex systems.

APPENDIX A: DERIVATION OF FORMULA „93…

By definition,

F~r,s!5
g2

2p E
0

1`

J0~rF!~12e2pn ln Ns2F4/4!
dF

F3
.

~A1!

For r50, we have already found@see Eqs.~76! and ~77!#
that

F~0,s!5
g2

8
An ln Ns . ~A2!

Therefore,

]F

]~s2!
~r,0!51` if r50. ~A3!

For rÞ0, we can make the change of variablez5rF in Eq.
~A1!. This yields

F~r,s!5
g2r2

2p E
0

1`

J0~z!~12e2pn ln N(s2/r4)z4/4!
dz

z3
.

~A4!

We therefore have to determine the behavior of the func

f ~p!5E
0

1`

J0~z!~12e2pz4
!
dz

z3
, ~A5!

as p→0. Clearly, it is not possible to expand the quant
12e2pz4

which occurs under the integral sign as a pow
series ofpz4, and evaluate the integral term by term. Ho
ever, writing the Bessel function in the form

J0~z!5
1

p
ReE

21

11

eizt
dt

A12t2
, ~A6!

and regardingz and t as complex variables, it is possible
choose integration paths along which this expansion
converge. Using the contours introduced in Sec. II C,
function f (p) can be rewritten

f ~p!5
1

p
ReE

t

dt

A12t2 Ezv t

eizt~12e2pz4
!
dz

z3
. ~A7!

We readily verify that the real parts ofizt and 2pz4 are
always negative, so the convergence of Eq.~A5! is not dis-
turbed. With these new contours, it is now possible to
pand the integrand in a power series ofpz4, and integrate
term by term. For our purposes, it is only necessary to c
sider the term of first order in this expansion:
n

r

ll
e

-

-

f ~p!5p
1

p
ReE

t

dt

A12t2 Ezv t

eiztzdz1O~p2!. ~A8!

Therefore,

f 8~0!5
1

p
ReE

t

dt

A12t2 Ezv t

eiztzdz. ~A9!

The integration onz can be carried out equivalently along th
line zc t

, defined in Sec. II C, on whichizt52y, y>0 real.
We obtain

f 8~0!52
1

p
ReE

21

11 dt

A12t2 E0

1`

e2y
y

t2
dy, ~A10!

wheret is a complex variable running along the semi-circ
of radius unity lying in the domain Im(t)>0. Since

E
21

11 dt

t2A12t2
50, ~A11!

we find f 8(0)50. Therefore

]F

]~s2!
~r,0!50 if rÞ0. ~A12!

To prove formula~93!, it remains to show that

E ]F

]~s2!
~r,0!d2r5

pn

4
g2ln N. ~A13!

For this purpose, we introduce the function

I ~s2!5E F~r,s!d2r. ~A14!

Substituting explicitly forF(r,s) and introducing polar co-
ordinates, we obtain

I ~s2!5g2E
0

1`

rdrE
0

1`

J0~rF!~12e2pn ln Ns2F4/4!
dF

F3
.

~A15!

Under this form, it is not possible to interchange the order
integration. An alternative expression forI (s2) can be ob-
tained along the following lines. Writing

I ~s2!5g2E
0

1`

drE
0

1`

rFJ0~rF!g~F!dF, ~A16!

where

g~F!5~12e2pnln Ns2F4/4!
1

F4
, ~A17!

and integrating by parts with the identity

xJ0~x!5
d

dx
„xJ1~x!…, ~A18!
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we obtain

I ~s2!52g2E
0

1`

drE
0

1`

J1~rF!Fg8~F!dF.

~A19!

It is now possible to interchange the order of integratio
Since

E
0

1`

J1~x!dx51, ~A20!

Eq. ~A19! reduces to

I ~s2!52g2E
0

1`

g8~F!dF5g2g~0!. ~A21!

Hence

I ~s2!5
pn

4
g2ln Ns2. ~A22!

This formula is valid for any value ofs, but, for our pur-
poses, we only need the result

I 8~0!5
pn

4
g2ln N. ~A23!

Since, by definition,

I 8~0!5E ]F

]~s2!
~r,0!d2r, ~A24!

we have proved Eq.~A13!.

APPENDIX B: GENERALIZATION TO INCLUDE A
SPECTRUM OF CIRCULATIONS AND AN ARBITRARY

ISOTROPIC DISTRIBUTION OF VELOCITIES

So far, we have assumed that the system was a ‘‘vo
plasma’’ consisting of an equal number of vortices with c
culation1g and2g. We shall now indicate how the prev
ous results can be extended to include a spectrum of ci
lations among the vortices. We shall also relax assump
~59! concerning the velocity distribution of the vortices, a
generalize the results of Sec. III to any isotropic distributi
t(v)5t(uvu) of the velocities. Such a distribution can b
written conveniently in the form

t~v!5E t~v0!

2pv0
d~v2v0!d2v0 . ~B1!

If t(g) governs the distribution over the circulations, it
clear that Eq.~56! has to be modified according to
.

x

u-
n

AN~r,s!5S E
g52`

1` E
ur u50

R E
uvu50

1`

t~g!t~r !t~v!

3ei (r•F1s•c)dgd2rd2vD N

. ~B2!

There is noa priori restriction on the functiont(g), but we
shall be particularly interested in the case where the sys

is ‘‘neutral,’’ i.e., ḡ5*t(g)gdg50. It is only in this cir-
cumstance that the velocity distribution~B1! may be used.
Otherwise, there is a solid rotation of the system which a
to the dispersion of the particles.

Expression~66! for AN(r,s) is now replaced by

AN~r,s!5S 1

pR2 Eg52`

1` E
uv0u50

1` E
uFu5ugu/2pR

1` E
ucu50

1`

3t~g!
t~v0!

2pv0
dS uguc

2pF2
2v0D ei (r•F1s•c)

3
g4

16p4F8
dgd2v0d2Fd2cD N

. ~B3!

Introducing polar coordinates, using identity~27! and substi-
tuting for

dS uguc

2pF2
2v0D 5

2pF2

ugu
dS c2v0

2pF2

ugu D ~B4!

in Eq. ~B3!, we can easily integrate onc to obtain

AN~r,s!5S 1

pR2 Eg52`

1` E
uv0u50

1` E
uFu5ugu/2pR

1`

t~g!t~v0!

3ei r•FJ0S 2ps

ugu v0F2D g2

4p2F4
dgd2v0d2FD N

.

~B5!

It is readily verified that

1

pR2 Eg52`

1` E
uv0u50

1` E
uFu5ugu/2pR

1`

t~g!t~v0!
g2

4p2F4

3dgd2v0d2F51. ~B6!

Therefore, the expression forAN(r,s) can be rewritten
equivalently,
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AN~r,s!5S 12
1

pR2 Eg52`

1` E
uvu50

1` E
uFu5ugu/2pR

1`

t~g!t~v!

3F12ei r•FJ0S 2ps

g
vF2D G g2

4p2F4

3d2Fd2vdg D N

, ~B7!

where we have writtenv instead ofv0, as it is a dummy
variable of integration. In the limitN,R→`, with n
5N/pR2 fixed, we obtain

A~r,s!5e2nC(r,s) ~B8!

with

C~r,s!5E
g52`

1` E
uvu50

1` E
ugu/2pR

1`

t~g!t~v0!

3F12J0~rF!J0S 2ps

ugu vF2D G g2

2pF3
dgd2vdF.

~B9!

For s50, the functionC(r,s) reduces to

C~r!.
g 2̄r2

16p
ln N ~r.0!, ~B10!

C~r!;2
g 2̄r2

8p
ln r ~r→0!. ~B11!

Therefore, the velocity distribution becomes

W~V!5
4

ng 2̄ln N
e2(4p/ng 2̄ln N)V2

@V&Vcrit~N!#,

~B12!

W~V!5
ng 2̄

4p2V4
@V*Vcrit~N!#, ~B13!

with

Vcrit~N!;S ng 2̄

4p
ln ND 1/2

ln1/2~ ln N!. ~B14!

These results differ from Eqs.~34!, ~49!, and~50! simply by

the substitutiong2→g 2̄, whereg 2̄5*t(g)g2dg is the aver-
age enstrophy.

Writing

C~r,s!5C~r!1F~r,s!, ~B15!

we obtain
F~r,s!5E
g52`

1` E
uvu50

1` E
0

1`

t~g!t~v!J0~rF!

3F12J0S 2ps

ugu vF2D G g2

2pF3
dgd2vdF.

~B16!

Following the same steps as in Appendix A, we find that

]F

]~s2!
~r,0!5p2v 2̄d~r!, ~B17!

where

v 2̄5E
0

1`

t~ uvu!v22pvdv ~B18!

is the mean square velocity of the vortices for the isotro
distribution t(uvu). Therefore, Eqs.~95! and ~96! are modi-
fied according to

^A2&V5
n2g 2̄

4
v 2̄ln Ne(4pV2/ng 2̄ln N) @V&Vcrit~N!#,

~B19!

^A2&V5
4p2v 2̄

g 2̄
V4 @V*Vcrit~N!#, ~B20!

and Eqs.~103! and ~104! according to

T~V!5
2V

nAg 2̄Aln NAv 2̄

e2(2pV2/ng 2̄ln N) @V&Vcrit~N!#

~B21!

T~V!5
Ag 2̄

2pAv 2̄V
@V*Vcrit~N!#. ~B22!

The mean duration of the fluctuations is

^T&5
2

3A6

1

Anv 2̄

, ~B23!

and the diffusion coefficient is

D5
1

72S 6

p D 1/2

Ag 2̄Aln N. ~B24!

For a Gaussian distribution of the velocities, we recover
results of Sec. III, appropriately generalized to account fo
distribution over the circulations.

For r50, the functionC(r,s) reduces to
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C~s!5E
g52`

1` E
uvu50

1` E
0

1`

t~g!t~v!

3F12J0S 2ps

ugu vF2D G g2

2pF3
dgd2vdF.

~B25!

Integrating by parts and using the identity

E
0

1` J1~x!

x
dx51, ~B26!

we obtain

C~s!5
1

2
uḡuv̄s, ~B27!

where

v̄5E
0

1`

t~ uvu!v2pvdv ~B28!

is the average velocity of the vortices. Equation~78! is
changed to

A~s!5e2(nuḡu/2)v̄s ~B29!

and the Cauchy distribution~79! to

W~A!5
2

pn2uḡu2v̄2

1

S 11
4A2

n2uḡu2v̄2D 3/2. ~B30!

We also find

^V2&A5
ng 2̄

4p
ln N @A&Acrit~N!#, ~B31!

^V2&A5
g 2̄A

2puḡuv̄
@A*Acrit~N!#, ~B32!

with

Acrit~N!;
1

2
uḡunv̄ ln N. ~B33!

For a Gaussian distribution of the velocities, we recover
results of Sec. III, appropriately generalized to account fo
distribution over the circulations.

APPENDIX C: CASE OF VORTEX BLOBS

In reality, the vortices have a finite radiusa which is not
necessarily small. This finiteness is responsible for a m
mum allowable velocityVmax;g/4pa, achieved when two
vortices are at distance;2a from each other. Higher veloci
ties are forbidden because the subsequent evolution
marked by merging events~see, e.g., Sire and Chavan
@16#!. It is interesting to consider the distribution of veloci
V and accelerationA produced by a collection of vorte
e
a

i-

is

‘‘blobs’’ with finite radius. This problem was previously
treated by Jime´nez @11# and Min et al. @12# using numerical
methods. The theory developed in this paper makes it p
sible to obtain new analytical results.

Introducing a cutoff atr 5a, Eq. ~29! is replaced by

CN~r!5
g2r2

2p E
gr/2pR

gr/2pa

@12J0~x!#
dx

x3
. ~C1!

In the limit N,R→` with n5N/pR2 finite, we obtain

C~r!5
g2r2

8p
lnS R

a D . ~C2!

In the case of vortex blobs, the singularity atr50 is re-
moved and the characteristic functionCN(r) is exactly qua-
dratic. ThereforeW(V) is the Gaussian equation~34! for all
V<Vmax. There is no algebraic tail in the limit considere
However, the convergence to the limit distribution~34! is
still slow ~see@11#! and, in practice, the velocity distributio
can differ substantially from the Gaussian even for large v
ues of N ~note that the formalism presented in this pap
could be used to study the dependence of the velocity di
bution with the numberN of vortices!.

More interesting is the distribution of the accelerationA.
In the case of vortex blobs, Eq.~76! is replaced by

C~s!5
g2

2p E
0

g/2pa

~12e2pn ln Ns2F4/4!
dF

F3
. ~C3!

After integrating by parts, one obtains

C~s!5pa2~e2(ng4ln N/64p3a4)s2
21!

1
g2

8
An ln N ErfS g2

8p2a2
Anp ln Ns D s, ~C4!

where

Erf~x!5
2

Ap
E

0

x

e2y2
dy ~C5!

is the ‘‘error function.’’
For s→0, the functionC(s) is quadratic ins,

C~s!;
ng4ln Ns2

64p2a2
~ usu→0!, ~C6!

implying that the distributionW(A) is Gaussian for large
values of the acceleration:

W~A!;
16pa2

n2g4ln N
e2(16p2a2/n2g4ln N)A2

~ uAu→1`!.

~C7!

Its variance is

^A2&5
n2g4

16p2a2
ln N. ~C8!
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For s→1`, the functionC(s) is linear ins,

C~s!;
g2

8
An ln Ns ~ usu→1`!, ~C9!

and we recover the Cauchy distribution~79! for small values
of uAu. Therefore, the distributionW(A) makes a smooth
transition from Cauchy~concave on a semilog plot! for small
fluctuations to Gaussian~convex on a semilog plot! for large
fluctuations. It is likely that in between the distributio
passes through anexponential tail, as observed numerically
by Min et al. @12# for the velocity gradients. Of course, whe
a is reduced, the transition between the two regimes occ
at larger fluctuations@see Eq.~C8!#. According to Eqs.~81!
and ~C8! the relevant nondimensional parameter to consi
is the area fraction na2. In decaying turbulence, the influ
ence of an extended core should be manifest at the begin
of the evolution, whenna2 is large.
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