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This paper is devoted to a statistical analysis of the fluctuations of velocity and acceleration produced by a
random distribution of point vortices in two-dimensional turbulence. We show that the velocity probability
density function PDF behaves in a manner which is intermediate between Gaussiarvanawss while the
distribution of accelerations is governed by a Cauchy law. Our study accounts properly for a spectrum of
circulations among the vortices. In the case of real vortigath a finite core, we show analytically that the
distribution of accelerations makes a smooth transition from Catfcinysmall fluctuationsto Gaussiarifor
large fluctuationg probably passing through an exponential tail. We introduce a fun€ii®f which gives the
typical duration of a velocity fluctuatio; we show thafT (V) behaves likev andV~?! for weak and large
velocities, respectively. These results have a simple physical interpretation in the nearest neighbor approxima-
tion, and in Smoluchowski theory concerning the persistence of fluctuations. We discuss the analogies with
respect to the fluctuations of the gravitational field in stellar systems. As an application of these results, we
determine an approximate expression for the diffusion coefficient of point vortices. When applied to the
context of freely decaying two-dimensional turbulence, the diffusion becomes anomalous and we establish a
relationshipy=1+(&/2) between the exponent of anomalous diffusioand the exponenf which charac-
terizes the decay of the vortex density.

PACS numbeps): 47.10+g, 47.27—i

[. INTRODUCTION have a Poisson distribution, i.e., their positions are indepen-
dent and uniformly distributed over the entire domain. We
A basic problem in fluid turbulence is the characterizationare particularly interested in the “thermodynamical limit” in
of the entire stochastic variation of the velocity filgr,t) ~ which the number of vortices and the size of the domain go
produced by the disordered motion of the flow. The velocityto infinity (N—c,R—2) in such a way that the vortex den-
fluctuations can be described by different quantities such asity n=N/mR? remains finite. In this limit, the Poisson dis-
their probability density function, the typical duration of the tribution is shown to be stationargee, e.g., Ref10]) and is
fluctuations, and their spatial or temporal correlations. WeVell suited to the analysis of the fluctuations. For the mo-
consider a simple model of two-dimensional turbulence formMent, the vortices have the same circulatigrbut we shall
which it is possible to calculate these quantities exactly. jdndicate later how the results can be generalized to include a

our model, the velocity is produced by a collection of pointSp(_al_(;]tmmIof ?r\c/ulatlong. t a i locati fthe flow i
vortices randomly distributed in the domain with uniform € velocilyV-occurring at a given jocation ot the fow'is

probability. Point vortices behave like particles in interac-the sum O_f the velocitied; (i=1, ... N) produced by the
. . . N vortices:

tion, and share some common features with electric charges

[1] or stars[2-5]. In particular, the problem at hand is di-

rectly connected with the problem of the fluctuations of the N
V=2, @,
i=1

electric field in a gas composed of simple ions or the fluc- @)
tuations of the gravitational field produced by a random dis-

tribution of stars. These problems were considered by Holts-

mark [6] in electrostatics and Chandrasekhgf] and v oI

Chandrasekhar and von Neumdi®9] in a stellar context. b;=-— o r_2 @

We will show that many of the methods introduced by these
authors can be extended to the case of point vortices, even if
the calculations, and the results differ due to the lower diwherer; denotes the position of th¢h vortex relative to the
mensionality of spacel{=2 instead ofD=3) and the dif- point under consideration and, by definition; is the vector
ferent nature of the interactions. r; rotated by+ /2. Since the vortices are randomly distrib-
We consider a collection o point vortices randomly uted, the velocityV fluctuates. It is therefore of interest to
distributed in a disk of radiuR. We assume that the vortices study the statistics of these fluctuations, i.e., the probability
W(V)d?V thatV lies betweerlv andV+dV. We find that
this distribution behaves in a manner which is intermediate
*Electronic address: chavanis@irsamc2.ups-tlse.fr between Gaussian and\helaws: the core of the distribution
TElectronic address: clement@irsamc2.ups-tise.fr is Gaussian, with “variance”
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ny?
(V3= Z- N, (3

while the high velocity tail decreases algebraically lke*.
Since the “variance” behaves like-InN, the thermody-
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and we discuss qualitatively how the formation of “pairs”
modifies the results of our study. In the context of freely
decaying two-dimensional turbulence, the diffusion coeffi-
cient is time dependen(since the circulation of a vortex
increases as a result of successive mergjraysd the diffu-

namical limit is not well defined and the results are pollutedsion is anomalous. From E(L0), we establish a relationship

by logarithmic corrections. Previous investigations of this

problem were carried out numerically in Ref41-13.
However, we must be aware that the knowledg&\g#/)

y=1+§ (12)

alone does not provide us with all the necessary information

concerning fluctuations of/. An important aspect of the
problem concerns thepeed of fluctuations.e., the typical
durationT (V) of the velocity fluctuation/. This requires the
knowledge of the bivariate probabilitw/(V,A)d?Vd?A to
measure simultaneously a veloclywith a rate of change

av &

_a:;l‘/’iy 4
oy (Ve 20 vy
e T

wherev;=dr,/dt is the velocity of vortex. Then the dura-
tion T(V) can be estimated by the formula

VI
T(V)= , 6
where
JW(V,A)AZdZA
(A%)y= (7)

W(V)

is the mean square acceleration associated with a velocity

fluctuation V. A similar quantity was introduced in Refs.
[8,9] in a stellar context. We find that the distribution of the

between the exponent of anomalous diffusioand the ex-
ponenté which characterizes the decay of the vortex density.
This relation is in good agreement with laboratory experi-
ments(Hansenet al. [15]) and numerical simulation&Sire
and Chavani$16]).

We indicate how our results are modified when we allow
for a spectrum of circulations among the vortices. This is an
important generalization, since decaying two-dimensional
(2D) turbulence possesses a continuous distribution of vorti-
ces. We show that the distribution of velocity and accelera-
tion are only slightly modified by the polydispersity of the
vortices, and we justify the validity of previous comparisons
of full numerical simulations with vortex models that ig-
nored this differencée.g., Ref[11]).

Finally, we generalize our results to the case of vortex
“blobs” with a finite core. We show that the natural cutoff at
r=a, the vortex radius, removes the algebraic tail of the
velocity distribution. Further, we analytically show that the
distribution of accelerations makes a smooth transition from
Cauchy(for small fluctuationsto Gaussiar(for large fluc-
tuations. It is likely that in between the distribution passes
through anexponential tailas observed numerically in Ref.
[12] for the velocity gradients.

Il. STATISTICS OF VELOCITY FLUCTUATIONS

A. General expression forw(V)

We shall now obtain the distributioy (V) of the veloc-

accelerations is governed by a Cauchy law, and that the typity V produced by point vortices randomly distributed in a

cal durationT (V) of a velocity fluctuationV behaves likev
for V—0 andV~1! for V—«. We also establish that the
average duration of the velocity fluctuations is

1
<T>~m- (8)

These results can be understood in the “nearest neighb

approximation,” in which the most proximate vortex plays a
prevalent role. In this approximation, the determination of
the speed of fluctuations can be deduced from the theory (%%

Smoluchowski 14] concerning the mean lifetime of a state
with X particles.

In terms of the previous quantities, we can estimate the

diffusion coefficient of point vortices by the formula

1
D=_

- ©

f T(V)W(V)V?d?V.
We find that

D~y\InN, (10)

disk of radiusR with uniform probability. To avoid a pos-
sible solid rotation, we shall assume that the system is “neu-
tral,” the circulation of the vortices taking only two values
+ v and — y in equal proportion. Since a vortex with circu-
lation — vy located inr produces the same velocity as a vor-
tex with circulation+ y located in—r, and since the vortices
are randomly distributed over the entire domain with uni-
form probability, the group of vortices with negative circu-

Mtion is statistically equivalent to the group of vortices with

positive circulation. We can therefore proceed as if there
ere a single species of particles but no solid rotation. Since
e shall ultimately leR— <<, we can assume without loss of
generality tha/ is calculated at the center of the domain.
Under these circumstances, the distributigg(V) can be
expressed as

N N
Wy(V) = Hr(ri)d2ri5(v—21q>i), (12)
=1 i=

wherer(r;)d?r; governs the probability of occurrence of the
ith point vortex at positiom; . In writing this expression, we
have assumed that the vortices are identical and uncorrelated.
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Now, using a method originally due to Markov, we expressWe have dropped the subscrijdtto indicate that the limit

the 6 function appearing in Eq12) in terms of its Fourier N—oo, in the previous sense, has been taken. NoteAla)

transform: can still depend ol through logarithmic factors, so that Eq.
(21) must be considered as an equivalent of @§) for large

1 o2 N’s, not a true limit.
8(x) = (27)2 e d°p. (13 To calculateC(p) explicitly, it is more convenient to in-
troduce® as a variable of integration insteadrofThe Jaco-
With this transformationWy(V) becomes bian of the transformatiofr} —{®} is
1 . an | ¥
V)= f An(pre " d%p, (14 o(®) ‘ 420" @3
with so that
R N yz +oo 0D 1 2
An(p) = e'?®r(ryd?r| | 15 Cp=— 1-er®—d’®, (24
o= [ errmn] 1s) W= ], A @)
where we have written or, alternatively,
Y 72 A 1 2
- = Cp)=— 1-cogp ®)|—d°d. (25
@5 (16) =15 | ol L COP D (25)

If we now suppose that the vortices are uniformly distributedChoosing polar coordinates with theaxis in the direction of
on average, then p, EQ. (25 can be transformed to

Y2 (te dd (2=

1
T(r):ﬁ, 17 C(p)=4—772 o @3 Jo [1—cogp® cosh)]d6,
(26)

and Eq.(15) reduces to where# denotes the angle betweprand®. Using the iden-

1 R N tity
An(p) =| — f el ®g?r | | (18
mR? [r|=0 m
cogzcosh)do=mly(2), (27)
Since 0
we obtain
B 1 (19
dor=1, 2
7R2 Jir|=0 A dd
C(p)==— 1-Jo(pd)]—, 28
0= 57 | 17 Jp )T (29

we can rewrite our expression fég(p) in the form
N or, writing x=p®,
1 R _
AN(p):(l_ 2 (1—6"'"”)d2r) . (20 y2p? [+ dx
™R Jlri=o Clp)= 5 [1-36()]5. (29
27 ypl27R X3
We now consider the limit when the number of vortices and

the size of the domain go to infinity in such a way that theRecall thatC(p) must be evaluated in the lim\,R— o,
density remains finite: with n=N/7R? finite. Using the well-known expansion of
the Bessel functiod, for small arguments,

N
R—o, n=—finite. X2

mR? Jo(X)=1— Z+o(x4), (30)

N—oo,

If the integral occurring in Eq(20) increases less rapidl .
thanNIthegn urmng a(20) | picly we have the estimate

A(p)=e "CP), (21) e 31)

with
. Since C(p) diverges weakly withN (logarithmically), the
C(p):f (1—e”®)d?r, (22) limiting process leading to formulé2l) is permissible. For
Ir|=0 p>0 andN—x, we have
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2 2
A(p)=e~ (M7 11mIn N~ (32 _ 4 — (4miny2In N)[V - (1/2)nya, |2
W)= ny2InN°© .
and forp—0, we obtain 1
V_En')’aJ_ =Vrit(N) |. (37
A( p) = eny?/8m(In p)p? (33 e . et
p ' The velocity distribution aa+ 0 differs only from the distri-

bution at the center of the domain by replacing the velocity
V by the fluctuating velocityV=V—(V)=V—3inya, . A
factor 1/2 arises in front of the average vorticity because,
for a solid rotation, the vorticity is twice the angular velocity.

The velocity distributionW(V) is simply the Fourier trans-
form of A(p). We shall now derive the expression (V)
in the core and in the tail of the distribution.

C. High velocity tail of the distribution W(V)

B. Core of the distribution W(V) We shall now determine the behavior of the distribution
For V=V,:(N), whereV.;(N) is defined by formula W(V) for V—. Introducing polar coordinates with the
(50), the contribution of smalp’s in integral (14) is negli-  axis in the direction o¥, and using Eq(21), Eq.(14) can be
gible, and we can use expressi@?®) for A(p). In that case, transformed to

the distributionW(V) is the Gaussian
1 —| Vcose —nC(p)
W(\V)=— da P Plpdp. (38

4
e (TNVE [ycy (N, o

ny’inN

W(V)=

(34 with the change of variables= pV andt= — cos6, Eq. (38)
can be rewritten

If we were to extend this distribution for all values \éf we

+
would conclude that its variance W(V)= j elZteNC(ZV) 2z
( 2v2 e:" /1 t2
2 (39
2\ . . . .
(Vo= E'” N (35 In this expressiont andz are real, and the domains of inte-

gration7y: —1<t<1 and{,:0=<z<+ are taken along the
real axis. Under these circumstances, the integral is not con-
diverges logarithmically wheiN—o. This result was noted vergent if we expand the quantity expnC(z/V)) in a
by Jimeez[11], Min et al. [12], and Weisset al.[13], who  power series of/V, for V— + %, and evaluate the integral
applied a generalized form of the central limit theorem. Interm by term. However, regardirgandt as complex vari-
fact, the central limit theorem is not strictly applicable here,ables, it is possible to choose paths of integration along
because the variance of the velocity created by a single vowhich this expansion will converge.
tex, We shall first carry out the integration anfor a fixedt.
It will therefore be possible to choose tfmmplex integra-
tion paths forz dependent ort. The integration paths are
o (R s [R1 modified as follows:r, is replaced byr, the semicircle with
(@)= j,loT(r)q) dr= o 7R2 Am?r 22mdr, (36 agius unity lying in the domain Int{=0. Therefore, argd)
varies froms to O whent moves from—1 to +1. On the
other hand/, is replaced byg“wt, the line starting from the
diverges logarithmically; still, the distribution &f is Gauss-  origin and forming an angle
ian [for V=V,;(N)], but its “variance” behaves like Ii.
For V=V,i:(N), distribution(34) breaks down because, for
large velocities, the Fourier transfor(®4) is dominated by wt=§(§—argﬂ)>
the contribution of smalp’s, and formula(33) must be used
instead of Eq(32). This implies that the high velocity tail of with the real axis. Whehmoves from—1 to + 1, w, varies
the distributionW(V) decays algebraically like&/~* (see  from — #/16 to + 7/16. For|z|—, according to Eq(32),
Sec. 11 Q. This algebraic tail arises because we are on thave have
frontier between Gaussian andwelaws (see Fig. 1.1 of
Ref.[17], and Sec. V. e—nC(Z/V):e—(ny2/167-r)In N(zz/vz)_ (41)
Distribution (34) has been derived for a neutral system
consisting in an equal number of vortices with circulation Since the argument af is between— 7/8 and/8, its real
+ vy and— . In Appendix B, we extend our results to allow part is always positive, and the convergence of &89) is
for a spectrum of circulations among the vortices, still for aundisturbed. On the other hand, the argumentois equal
neutral system. If the system is non-neutral, there is a solitb #/2+ 1/8[ w/2—arg(t) ]+ arg(t), and lies between®/16
rotation and the average velocity increases linearly with thend 237/16. Therefore, the real part oft is always nega-
distance. Therefore, at poiat Eq. (34) must be replaced by tive, and the functiore'?' decays exponentially to zero as

2

(40)



494

|z| —<. Therefore, with the new paths of integratierand
{w, it is possible to expand the integrand of E9) in

power series ok/V, for V—oo, and integrate term by term.

Whenz/V—0, we have, according to E¢33),

e NC@V) = e(n72/87r)ln(z/V)(22/V2) (42)
and we can write
W(V)= ! R a et
272v2 ) \1-12 Uy,
1l 2)E d 43
E n v ? --.|ZzdzZ ( )
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Therefore, for sufficiently large values 9f the velocity dis-
tribution W(V) decays algebraically, liké¢ 4. In Sec. V, we
give a physical interpretation of this result in terms of the
nearest neighbor approximation.

From Eqs.(34) and(49), we can estimate the value of the
velocity V,it(N) for which the distributionW(V) departs
from the GaussiarV,;;(N) is obtained by seeking the point
where the two regimeg4) and (49) connect to each other.
Neglecting subdominant terms in one simply finds

2

ny 1/2
Verie(N)~| Z—1In N) INY2(InN). (50)

This result shows that the convergence to a pure Gaussian
distribution is extremely slow, with as emphasized in Refs.
[11-13. Since the distributioW(V) decreases lik& ~* for

Since this integral is convergent along any line on which they .« the variance of the velocity diverges logarithmically.

real part ofizt is negative, we can replace the integration

path Lo, by the Ilnegwl, forming an angle

a
=7 —argt) (44)
with the real axis. On this new integration pat#t=—vy (y
reak=0), and we obtain
W(V)= f -y
(V) —1 2
y? [iy\1 ny? Int
1- y v oty ydy,
8 t2 V2 8T t2 VZ
(49)

Note, finally, that the distribution o, , thex component
of the velocity, is

2 2, o
WV)= — —47TVX/ny InN Vo=<V..(N ,
( X) n‘yzln N e [ X Crlt( )]
(51)
2
WV = — 2 [V, =Veu(N)]. (52

Vi

D. Formation of “pairs”

The previous results should be all the more valid if the
velocity V is calculated at a fixed point of the domain. In
such a case, there is no restriction on the possible valu#s of
since a vortex can approach this point with no limit produc-

where we recall thatis a complex variable, and the integra- ing extremely large velocities. The situation is differenVif
tion has to be performed over the sem|C|rcIe of radius unityS how the velocity experienced by a “test” vortex. Indeed,

lying on the domain Imi)=0. Writing t=e'?, we find that

f+1 dt J+1 dt
———=0, —— =0,
~1t21-12 —1t41—t2

fﬂ Int dt= 2 (46)
thi—2 3
Therefore,
wivy= 17 f ey (47
= e .
24m2v4 Jo yay
In this expression, we recognize thefunction
+
F(n+1)=f e Yydy, (48
0

with n=3. Its value isl'(4)=6, and we finally obtain

ny?

424

W(V)= [V=Veri(N)]. (49

if a “field” vortex approaches the test vortex below a certain
distance, then a “pair” will form, and our treatment, which
ignores the correlations between vortices, will clearly break
down. These pairs have been observed and studied numeri-
cally by Weisset al. [13].

We can simply estimate the typical separation below
which a pair will form by comparing the velocity produced
by a single vortexy/2zr with the typical velocity Vi,
=[(ny?/47)In N]*? produced by the fielfisee Eq. 35 This
yields

dpair(N):(WnlnN)illzr (53

a distance slightly smaller than the interparticle distance by a
factor ~1/4/InN. In the mathematical limitN—co, there is

no pair, sinced,,;,— 0. This result is in agreement with the
stationarity of the Poisson process whén-«: if the vorti-

ces are initially uncorrelated and uniformly distributed, they
will remain uncorrelated and uniformly distributed. How-
ever, the convergence is extremely slow wihand close
pairs will always form in realistic situations. As emphasized
by Weisset al. [13], a system of 19-10° vortices has a
behavior which is a combination of both low-dimensional
behavior, i.e., closed pairs, and high-dimensional behavior
described by traditional stochastic processes.
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A pair can be either a “binary'(rapidly rotating around
its center of vorticity, when two vortices of the same sign An(p,o) =
are bound together, or a “dipoleltranslating or rotating
when two vortices of opposite sign pair off. Of course, bina-
ries and dipoles behave very differently. If the vortex is en-
gaged in a binary with a long correlation time, then, for
practical purposes, the relevant velocity to consider is not its
own velocity (which has a rotating compongnbut rather b=— - — (57)
the velocity of the center of vorticity which is induced by the 27 2
rest of the system. Therefore, a binary simply behaves like a
single point vortex with a larger circulation and a relatively y (VJ_ 2(r-v)rL)

R +o N
f f (r,v)e P ®redg2rgey | |
[r|=0J]v|=0
(56)

where we have defined

slow velocity (otherwise this means that the binary is itself h=——
engaged in a pair It may be noted that, in the case of real
vortices (with a finite corg, the formation of binaries is re- N _
placed by merging events. On the other hand, a dipole moved Wherer(r,v) denotes the probability that a vortex be in
by itself and behaves like a kind of particle undergoing fast” With velocity v. According to our initial assumptions, the
ballistic motion. Its velocity may be large but, since it createsvortices are distributed uniformly on average, ar(d) is
a dipolar velocity field, the previous results cannot be apdiven by Eq.(17). On the other hand, their velocity distribu-
plied directly, and an appropriate treatment is required.  tion 7(V) is given by Eqs(34) and(49) of Sec. II. However,
We therefore expect that the velocity distributiof8s}) due to the formation of pairs, this distribution must be modi-
and (49), which ignore correlations between vortices, will fied at large velocitiessee Sec. Il D Instead of introducing
break down fotV>V,;;(N) since, in that case, the velocity @ sharp cutoffr(v)=0 at v>vnay, we shall assume for
is entirely due to the nearest neighbor, and pairs form. In théonvenience that the Gaussian distributi@#d) is valid for
following, we shall account for this failure by introducing a all velocities. Therefore, the probability that a vortex be in
cutoff at someV .y, 1.€., with velocity v is

(58)

1 4

7R? ny?In N

W(V)=0 (V>V,a). (54) V)= g~ (4minyiinN)o®q (59

This is the simplest modification that we can make to acdt is remarkable that distributiofb9) is formally equivalent
count for the formation of pairs at large velocities. Likewise,to the Maxwell-Boltzmann statistics of material particles at
in the stellar context, the formation of binaries alters theequilibrium. Owing to this analogy, we can interpret the vari-
results of the stochastic analysis at large field strengths. ance

2
— n'y
lll. STATISTICS OF ACCELERATIONS UZ:E'” N (60)
A. General formula for W(V,A)
as a kind of kinetic “temperature.” More generally, the mo-

Here we are concerned with a calculation of the bivariatqﬂent of ordem of the velocity is

probability Wy(V,A) to measure simultaneously a velocity

V with a rate of changé=dV/dt. According to Eqs(1) ny2nN\P2 (p
r §+1

and(4), V andA are the sum oN random variabled; and vP=
¢ depending on the positiomsand velocities; of the point

vortices. However, unlike material particles, the variables o ) )
{r; v}, for differenti’s, are not independent because theWhere thel” function is defined by Eq48). In particular

velocities of the vortices are determined by the configuration

A ' (61)

2 1/2
{r;} of the system as a whole. However, for our purpose, it is — (Y
o v= InN (62)
probably a reasonable approximation to neglect these corre- 16
lations and treafr;,v;} (i=1,... N) as independent vari-
ables. We shall only describe qualitatively how the formation Recall that the distributio59) is valid only for a neutral
of pairs affects our results. system made of an equal number of vortices with circulation

When this decorrelation hypothesis is implemented, aty and — v (if the system is non-neutral, we must account
straightforward generalization of the method used in Secfor a solid rotation. Since a vortex with circulation- vy,
Il A yields located inr and moving with velocity, produces the same
velocity V and accelerationA as a vortex with circulation
+ v located in—r and moving with velocity—v, and since
the vortices are randomly distributed with a uniform prob-
(55) ability and isotropic velocity distribution, the two groups of
vortices are statistically equivalent. Therefore, as in Sec. I,
we can proceed as if we had a single type of vortex with
with circulation y and no solid rotation. In Appendix B, we ex-

Wy(V,A)= f An(p,o)e (P VTN g2pd2 g,

167
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tend our results to allow for a spectrum of circulations 1 o _
among the vortices and an arbitrary isotropic distribution of An(p, o) = 1— — (1—¢eP®
the velocity 7(|Vv]). |®f=/27R
ngbstituting expressio(b9) for 7(r,v) into Eq. (56), we - 2 N
obtain —mn InNag“d*/4 2
Xe )———d®| . (69
4772<D4 )
1 R +o0 4 . - .
Ay(po)=| — f f We shall now consider the [imitN,R—% with n
wR? Jiri=0Jv=0ny?InN =N/7R? finite. If the integral appearing in Eq69) in-
N creases less rapidly thawy then
XG—(47T/n72|r'I N)vzei(p~(l)+0'~l//)d2rd2v) _ A(p,o-)=e‘”c(”"’), (70)
(63) with
. . . 2 %
As in Sec. I! A, it is more convenient to usk and 1,[1 as C(p,o)= 7 * 1— gip-®g=mnin N02¢4/4)id2¢_
variables of integration rather thanandv. The Jacobian of |®|=yi27R 4
the transformatior,v}—{®,y} is (71)

As in Sec. Il A, the functiorA(p, o) represents an equivalent

H (rv) H (64) of Ay(p, o) for largeN, not a true limit. It can therefore still
AP, | 16m*D8 depend orN through logarithmic factors.

After introducing polar coordinates and integrating over

We must next express=|v| in terms of our new variables the angular variable using ER7), we arrive at
& and . According to Egs.(57) and (58), we have®

= /27 and = yv/2mr?. Hence Cip.o)= 7_2 f“ (1—Jq(pd)e~ ™ INo?ediay T2 dq>
' yI27R 0 (I)
o=t (65 e
2m @2’ Equations(55), (70), and (72) formally solve the problem,

but the integrals look difficult to calculate explicitly. How-
Thus, in these new variables, the expressionAq(p,o)  €Ver. if we are only interested in the moments/offor a
becomes givenV (or in the moments o¥ for a givenA), we only
need the asymptotic expansion @f(p,o) for |o|—0
(|p|—0). This problem will be considered in Sec. Ill C. First
f” J+°° 4 we shall derive the unconditional distribution of the accel-
|®|=y/27RJ [gi=0ny? NN eration.

1

An(p o) =

_ 2104 il(n. .
x g~ INN( P gilp- D+ 0 4) B. Cauchy distribution for A

v N
X d?®d?y| . 66
1674 P8 d’) (58

According to Eq.(55), we clearly have

W(A)= f A(p,o)e  (PVTorANg2pd2od?V.
: . : . : _ 1674
The integral with respect tay is Gaussian and is readily (73)
evaluated. We are left with
Using Eq.(13), the foregoing expression fok/(A) reduces

1 (4w to
AN(p: 0,) — f eip-'l)e— n In Ng2d?/4
7R? J|®|=y/24R 1 _
N W(A)= — f A(o)e ' Ad?%g, (74)
')/2 477'2
X— 4d2<I)) . (67)
4P where we have writte\( o) for A(0, o). Hence, according
to Egs.(70) and(72), we obtain
We verify that
A(o)=e "¢, (75
1 [+ ' with

d’d=1. (69)

7R2 J|@|=y/24R 471-2<I>4 ,

_ _ C(O’) — 7_ j+m(l Sl In No-2<1>4/4) do ) (76)
Hence, we can rewrite E@67) in the form 2w Jo o3
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Following the usual prescription, we have Rt-«, since
the integral is convergent wheh— 0. Integrating by parts,
we obtain

2

C(a’)=% ninNo. (77)
Hence
A(o)=e 78N, (79)

The distributionW(A) is simply the Fourier transform of the

exponential function(78). This is the 2D Cauchy distribu-
tion:

1
64A2

W(A) = TP
_I_ —
n3y%n N)

79
mn3y*n N ( (79

The Cauchy distribution is a particular elaw. As such, it
decays algebraically for largé\|'s, according to

¥2n32InN

WA~ e a2

(A—). (80)
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WV)(ALA, )= f Alp,0)

1674
X e—i(p.V+ U»A)AMAvdZPdZG.dZA,

(84)
or, equivalently,
0—,2
WA=~ = [ Alpr)——
x{e VT oAng2ad2ed?A.  (85)
Integrating by parts, we obtain
WVI(AA =~ f A (p.0)
167 do*do”
xe (VT 2nd2gd?A.  (86)

Using identity(13), we can readily carry out the integration

on A and g, to finally obtain

1 9°A

472 ) gotoc”

W(V)<A,MAV>V: - (p’o)e—ideZp_
(87)

Since the characteristic functiok(p, o) is isotropic in each

This result has a clear physical interpretation in the nearedlf its variablegsee Eqs(70) and(72)], the tensoKA,A, )y

neighbor approximatiorisee Sec. ¥ Only the moments of

orderp<<1 of the acceleration exist, and we have the general

expression

142

5| (81

(AP)= (—na]zy;m) p\%r(?) r

Note, finally, that the distribution oA, , thex component of
the acceleration, is the ordinary 1D Cauchy law

1
64A2
n3y%nN

W(A,) =

(82)
m2y%\InN

is diagonal, and can be expressed as

1
<A,MAV>V:§<A2>V5,LLV' (88)
where(A?),, is given by
W(V)(A?) S (p.0)e "*Vd?p. (89
v w2 J 9(a?) '

We therefore need the behavior Afp,o) for |o|—0, or
according to Eq(70) the behavior ofC(p, o) for |o]—0.
Introducing the functiorC(p) defined in Sec. Il Alsee Eq.
(28)], and using Eq(72), we can write

C(p,0)=C(p)+F(p,0), (90)

We can show, furthermore, that the distribution of accelerawith

tions is related to the distribution of velocity gradiedtg (in
preparation This is to be expected sinde=dV/dt.

C. Moments (A?),, and (V)

Let us introduce a Cartesian system of coordinates, ane have letR—, since the integral is convergent when
®—0. In terms of this new function, the expression for

denote by{A,,} the different components & relative to that
frame. The average value 8f,A, for a given velocityV is
defined by

1
<AMA,,>V=W f W(V,A)A A, d?A. (83

According to Eq.(55), it can be written

2
LA _ 2y AP
F(P,U):EJ’O Jo(p(I))(l_e wnInNoq>/4)§.

(91)

(A?), can be rewritten

JF
I a?)

W(V) (A%, =5 f CI

5 (p.0)e""*Vd?p.
ar

(92

It is shown in Appendix A that
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9F n Apart from the logarithmic correction, this formula can be
- (p.0)= Tyzln N&(p), (93)  obtained by direct dimensional analysis. However, if we de-
(a*) fine the mean lifetime of a staié by the formula
where § stands for the Diradd function. Substituting the M
foregoing expression in Eq92), we obtain T(V)= , (102
WA%)y
n2,)/2
W(V)(A%)y= 2. NN. (94 the theory developed along the previous lines enables us to

obtain a more precise characterization of the speed of fluc-
Therefore,(A2>V behaves like the inverse of the velocity tuations depending on their intensity. This definition is con-

distribution W(V). Combining Eqs(94), (34), and (49), we sistent with the definition introduced in Refi8,9] in the
context of stellar dynamics. Of course, E402) is just an

obtain
order of magnitude, but it should reasonably well account for
n3y4 s s the dependence on the speed of fluctuations WithJsing
(A?),,= 5 (N N)2el4 VI inN) - Tv=V ; (N)], Egs.(95) and(96), we find, explicitly,
(99
47V
2 4 T(V)= Le*(z”’”yz'“ NV V= Ve(N)],
(A?y=nmInNV* [V=Vi (N)]. (96) n®2y2nN
(103
ForV—oe, (A?), behaves like/*. This result finds a simple
physical interpretation in the nearest neighbor approximation 1
(see Sec. Y. T(V)=——= [V=V.ii(N)]. (1049
By a similar procedure, we can calculate the variance of ymninN Vv

the velocity for an assigned rate of change. We find ) )
For weak and large fluctuation§(V) decreases to zero like

ny? V and V1, respectively. These asymptotic behaviors are
<V2>A:4—|” N [AsAci(N)], (97)  consistent with the theory developed by Smoluchovj$Ki
T in his general investigation on fluctuation phenomésee
Sec. V Q. These resultéand those of Sec. llishould be all
(V2) = 2A the more valid ifV is calculated at a fixed point. By contrast,
A Wm if V denotes the velocity experienced by a test vortex, we
expect some discrepancies at lakgjs due to the formation
For moderate values @, the varianceVV?), is independent of pai_rs. In s_uch a case, the_z correlation time can be extremely
of A, and coincides with formulé5). For large fluctuations, '0ng (in particular for binaries o ,
result(98) can be recovered in the nearest neighbor approxi- 1he average duration of the fluctuations is defined by
mation (see Sec. Y. The crossover between the two distri-

[AZAcrit(N)]- (98)

. + o0
butions(97) and (98) occurs at <T>=J T(V)W(V)27VdV. (105
n3’2y2 , 0
X - 3/2
Acrit(N) 8 (InN)™= (99 To leading order in IN [i.e., extending Eqs(34) and (103

to all V’'s], we obtain

IV. SPEED OF FLUCTUATIONS AND THE DIFFUSION "
COEFFICIENT 4 ( 77) 1
ny

(T=3 Y e

On the basis of very general considerati¢see, e.g., Ref. j, good agreement with estimaté01) based on general
[13]), we would expect that the typical duration of the veloc- physical grounds.

ity fluctuations be

6 (106)

A. Mean lifetime of a velocity fluctuation V

d B. Diffusion coefficient
Typ~ m (100 According to the previous discussion, we can characterize

the fluctuations of the velocity of a point vortéar a passive

This corresponds to the time needed by a vortex with typicaParticle by two functions: a functio’W(V) which governs

velocity \/m to cross the interparticle distance-n 12 the occurrence of the velocity, and a functionT (V) which
Using expressiori35) for (V2), we find " determines the typical time during which the vortex moves

with this velocity. Since the velocity fluctuates on a typical
1 time T, ,= d/\(V?), which is much smaller than the dy-

Tiyp~ ——- (101  namical timeTp= R/\/(V?} needed by the vortex to cross the

nyyinN entire domain, the motion of the vortex will be essentially
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stochastic. If we denote bf(r,t) the probability density in the pair. This is not the case for dipoles which can make

that the particle be found in at timet, then P(r,t) will  relatively long jumps from one point to another with an al-
satisfy the diffusion equation most ballistic motion. Weisst al.[13] proposed interpreting

these jumps in terms of Mg walks responsible for anoma-
lous diffusion. Therefore, the present theory should provide
reliable results only for relatively short times. For times
>Tp, the pairs must be taken into account and anomalous
If the particle is atr=r at timet=0, the solution of Eq. diffusion will ensue. The case of passive particles is not so

7 _pap 10
i : (107)

(107 is clearly different. A passive patrticle is advected by the other vortices
but has no influence on their motion. However, passives can
P(r,tlro) = e (Ir=rol9)/4Dt (108 become trapped in the vicinity of a vortex undergoing fast

' 47Dt ' dipolar motion, and also experiencevyewalks.

) - o ) The previous results remain valid for a non-neutral system
whereD is the dlffusmn_coefflment. The mean square d's'rotating uniformly, provided that the velocity is replaced
placement that the particle is expected to suffer during ay the fluctuating velocitp)=\V — (V). In particular, expres-
interval of timeAt, large with respect to the fluctuation time sions (106) and (113 for (T) and D are unchanged. For a
Tiyp, IS differential rotation, the fluctuation time is related to the lo-

((Ar)2)=4DAt. (109 cal s_heayE, as |nv_est|gated py Chqvanﬁs] using an ap-
proximation in which the point vortices are simply trans-

We can obtain another expression {6Ar)?) in terms of the ~ Ported by the mean flow. Therefore, the present theory gives

functionsW(V) and T(V) defined in the previous sections. the value of the fluctuation time in regions where the shear
Indeed, dividing the interval cancels out. Of course, a more general calculation should

take into account the effect of both the shear and the disper-
that o sion of particles, but this will not be considered here. Note
Ar= ft V(t')dt (110 also that when the system is inhomogeneous, the point vor-
tices are subjected tosystematic driff3] in addition to their
into a succession of discrete increments in position withdiffusive motion. This drift may be responsible for the orga-

amountT(V,)V,, we readily establish that nization of point vortices at “negative temperatures8].
((Ar)?%)=(T(V)V?)At. (119 C. Application to 2D decaying turbulence

Combining Egs.(109 and (111) we obtain an alternative Let us cor_13ider a collectio_n of vortices of_sia_evo_rticity

expression for the diffusion coefficient in the form w, and densityn. Due to merging events, their size increases

with time as the density decreases. The typical core vorticity
1 - o remains constant during the course of the evolution as
D= 4 f T(VIW(V)VEdV. (112 suggested in Ref$19-21], and observed experimentally in
Ref.[15]. These authors found that the density decreases as
Substituting forT(V) andW(V) in the foregoing expression, n~t~¢ with ¢&~0.7. As the energE~Nw?a* is conserved

we obtain, to leading order in N, throughout the merging process, the typical vortex radius is
&4

1/2 a~1t%% Since the average distance between vortices, of order

1(6 2 ; S : )

D= —[2 y\/m. (113 d~t*“ increases more rapldly thf_;ln their size, the point vor
72\ 7 tex model should provide increasing accuracy. We can there-

fore expect that the vortices will diffuse with a coefficient
We should not give too much credit to the numerical factorD ~ y [see Eq(113)], wherey~ wa? is their circulation(we
appearing in Eq(113), since definition(102) of T(V) is just  ignore logarithmic corrections If the diffusion coefficient
an order of magnitude. Note that the functional fornrDois ~ were constant, then the dispersion of the vortices
consistent with the expression
(r>y~Dt (115

~ 2y
DTV ym (114 would increase linearly with time, as in ordinary Brownian

that one would expect on general physical grounds. Weisgotion. However, sinc® varies with time according to
et al.[13] proposed describing the motion of the vortices by 2 e
a Ornstein-Uhlenbeck process with “friction™V/(T) to D~ wa®~t*%, (116
take into account the finite decorrelation time of the system,
The functionT(V) introduced in the present paper could be
used instead ofT), to take into account the dependence of (r3~t”, (117
the decorrelation time with the strengitof the fluctuations.

The present theory ignores the formation of pairs since wavith »# 1. Substituting Eq(116) into Eq. (115, we obtain
have formally introduced a cutoff at lar§&s. This cutoff is  the following relation betweem and &:
justified for binaries since, as we have already explained, the
relevant velocity to consider is the velocity of the center of p=14 § (118
vorticity, not the velocity of the individual vortices engaged '

we expect anomalous diffusion, i.e.,
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This expression differs from formula (19) of Réfl5]  ticular because the variance @ diverges only logarithmi-
because their estimate 0f is different. These authors esti- cally. First considering Eq.(121), and neglecting the
mate the diffusion Coefficientb@~rmerg(V2>,WhereTmerg logarithmic correction, we observe that the velocity pro-
is the average time between two successive mergings of @uced by all the vortices behaves likdN, as though the
given vortex. By a simple cross section argument, they obgentral limit theorem were applicable. However, comparing
tained 7yerg~1/(nV(V)a), which is larger thanuee  with Eq. (119), we note thatyN is also the scaling of the
~d/\(V?) by a factord/a. This shows that the merging time largest term in the sum. Therefore, the contribution of the
is not the relevant correlation time to consider in the diffu-nearest neighbor is of the same order as the contribution of
sion process. In fact, using~0.7, formula(118) leads to the rest of the systerfup to a logarithmic factor It is on
v~1.35, in better agreement with the experimental value account of this particular circumstance that the velocity has a
~1.3 (v~1.4 for passive particleghan their relatiorw=1 behavior which is intermediate between Gaussian any Le
+(3¢&/4), leading tor~1.53. Formula(118) is also in per- laws, as remarked upon earlier. In a sense, we can consider

fect agreement with the numerical simulations of R&B]. that the velocity is dominated by the contribution of the near-
est neighbor, and that collective effects are responsible for
V. NEAREST-NEIGHBOR APPROXIMATION logarithmic corrections.

A. Importance of the nearest neighbor o .
) ] _ B. Distribution due to the nearest neighbor
The velocityV and acceleratio experienced by a test

vortex (or occurring at a fixed poiptare the sum ofN ran-
dom variablesb; and s produced by all the vortices present

In light of the previous discussion, it is interesting to ana-
lyze in more detail the distribution of the velocity and accel-

in the systenisee Eqs(1) and(4)]. In each sum, the highest eration produced by the nearest neighbor. For that purpose,

term is due to the nearest neighbor, at an average distan§ Must first determine the probabiliy(r)dr that the
d~n~Y2from the point under consideration. This single vor- position of the nearest neighbor occurs betweeand r

tex creates a typical velocity and acceleration: +df- Clear_ly, _TNN(_r)dr is_ equal to the pr_o_bability that no
vortices exist interior ta times the probability that a vortex

y 12 42 N (any) exists in the annulus betweemndr +dr. Therefore, it
Vﬁ,N~(ﬁ) (119  must satisfy an equation of the form

Nﬁ mR?’
;
2 2 R muw(r)dr= 1—f man(r’)dr’ |n2ardr, (123
P2 ~o? | ~ X2 (120 °
2d? 472 \ wR?

wheren=N/7R? denotes the mean density of vortices in the
It is interesting to compare the contribution of the nearesglisk. Differentiating with respect to, we obtain
neighbor with the contribution of the othéi—1 vortices.

For that purpose, we estimate the typical value/adind A i nn(F) = (1) (124
produced byall the vortices by dr| 2mnr NNAE /-
2 R 2 2 N This equation is readily integrated with the condition
’ 4 Y . Y
Ve~N P Jlr—dT(r)4'n'2r2d 1 E'” N, (1) ~27nr asr—0, and we find
12
(129 TNN(r)=2wnre‘””'z. (125
2 2
A2~ Np?2 Y ~Np2 , R (r) Y d2r This is the distribution of the nearest neighbor in a random
Ag2r4 Ir|=d 4gr2r4 distribution of particles. From this formula, we can obtain
) ) the exact value for the “average distancd’between vorti-
7_4(2 N ces. By definition,
iy _7TR2) . (122
+ o
If the variance ofd® and  were finite, the central limit d= fo mn(r)rdr. (126
theorem would be applicable, and the variablésand A
would scale likeyN. In that case, none of the terms in sumsHence
(1) and (4) would have a dominant contribution, and the
scaling VN would simply reflect thecollective behavior of 1
the system. This is not the case, however, in the present d:m- (127)

situation, since the variance @ and ¢ diverge. The vari-
ance ofir diverges algebraically, and, thus, the acceleration
produced by all the vortices is dominated by the contributior\/e
of the nearest neighbor. Thiadividual nature is a specific

and striking property of a vy law. For a Ly law, the sum 4
of N random variables behaves like the Iargest_téqnm- TNN(r,v)znef””rz e~ (4mny?InN)yw? (128
pare Egs(122 and(120]. The case of the velocity is par- ny?in N

The probability of finding the nearest neighborrirwith
locity v is
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If we assume that the velocity and the acceleratioA are
entirely due to the nearest neighbor, then

Wyn(V,A)d2Vd2A = 7y (r,v)d?rd?y, (129
with
__rn
V=—5- " (130
oy (v 20wy
A__E(r_z_r—“ . (131

Since the Jacobian of the transformationv} —{V,A} is

a(r,v 4
R =
IVA) | 16m4ve
we obtain
WNN(V A) = 72 ie_(n72/4ﬂ'vz)e_ (A2/n7T|n NV4)
" 4z%nN Ve '

(133

where we have used=1y/27V and v=yA/27V2. The

nearest neighbor approximation is expected to give releva
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C. Application of Smoluchowski theory

In the nearest neighbor approximation, the duration of the
velocity fluctuations can be deduced from the theory of
Smoluchowski[14] concerning the persistence of fluctua-
tions. This approach was used by Chandrasekiipm his
elementary analysis of the fluctuations of the gravitational
field. An account of Smoluchowski theory can be found in
Ref.[22]. In the case of point vortices, it leads to the formula

R

v (139
4v ,

T(V)=
" n—72+V2
4ar

whereV=v/27r is the velocity due to the most proximate
vortex, at a distance from the point under consideration.
The Smoluchowski formula[Eq. (139] has the same
asymptotic behaviors as Eq$103) and (104). These
asymptotic behaviors have a clear physical meaning. When
r=v/27V is small, corresponding to large velocities, it is
highly improbable that another vortex will enter the disk of
radiusr before long. By contrast, on a short time scdle
~rlv~~ylvV, the vortex will have left the disk. When
=yl27V is large, corresponding to small velocities, the
r{)robability that the vortex will remain alone in the disk is
bw. The characteristic time before another vortex enters the

results only for large values of the velocity and the acceleragjsy varies as the inverse of the number of vortices expected

tion. Thus we can make the additional approximation

¥ 1

(A2 V4
W (V,A): . (A%/narin N ) (134)
NN 474NN V8
Integrating on the acceleration, we find
Wyn(V) = —4772\/4, (135

in perfect agreement with E¢49) valid for V=V,,;;. This

to be present in the disk, i.€T,~(r/v)(1nmr?)~Vinyv.

The demarcation between weak and strong fluctuations cor-
responds t&/~ yn'?, i.e. to the velocity produced by a vor-
tex distantn Y2 from the point under consideration.

VI. CONCLUSION

In this paper, we have analyzed in detail the statistics of
velocity fluctuations produced by a random distribution of
point vortices. We have determined the velocity distribution

shows that the algebraic tail of the velocity distribution is @nd the speed of fluctuations. We have also shown how some
produced by the nearest neighbor. This is characteristic of &f the results can be understood in the nearest neighbor ap-
Lévy law. On the other hand, fo¥<V,,;, , the velocity dis-  Proximation. Our results should be accurate if the velocity is
tribution is Gaussian, as if the central limit theorem werecalculated at a fixed point. However, there should be sub-
applicable. Once again, the simultaneous occurrence of coftantial discrepancies at large velocitie¥/ilnow represents
lective and individual behaviors is a manifestation of thethe velocity experienced by a point vortex. This is due to the

very peculiar nature of an interaction in! in two dimen- ~ formation of pairs(binaries or dipoleswhen two vortices
sions. come into contact. If we ignore these pairs, the motion of the

Integrating on the velocity, we find vortices is purely diffusive, and we determined the functional
form of the diffusion coefficient. In the case of real vortices,
v*n32InN with a finite core, the formation of binaries is replaced by
B merging events, and the number of vortices decreases with
16mwA time. This results in anomalous diffusion. We proposed a
erelationship between the exponent of anomalous diffusion
and the exponeng which characterizes the decay of the
vortex density. In a future studyn preparation we shall be

Wiyn(A) = ) (136

in perfect agreement with the asymptotic behavior of th
Cauchy distributiorfEq. (80)]. We also establish that

(A?)y=nmInNV*, (137  concerned with the spatial correlations of the velocity.
) 2A
<V >A:Tm, (138 ACKNOWLEDGMENT
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in complete agreement with formuléd6) and (99). the manuscript.
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Note addedRecently we have become aware of the work
by Kuvshinov and Schefto appear in Phys. Rev. Létton f(p)=p— ReJ’
the statistics of point vortex systems.

j e?'zdz+0(p?). (A8)

\/1T

Therefore,
APPENDIX A: DERIVATION OF FORMULA (93
By definition, 0= 1R f dt o
=—Re e'*'zdz A9
R A9
n In No20%/4 d(b
F(p,o)=-— o(Pq))(l e ) The integration oz can be carried out equivalently along the
(Al) line 5%, Qef|ned in Sec. Il C, on whiclet=—y, y=0 real.
We obtain
For p=0, we have already founfksee Eqs(76) and (77)]
that f Y
f’ 0———Re Y=dy, (A10
F(O, 0')_ g VN INNo. (A2)  wheret is a complex variable running along the semi-circle
of radius unity lying in the domain Int{=0. Since
Therefore,
f tdt =0 (A11)
_ —1t21-t2
—z(p,0)=+00 if p=0. (A3)
(o) we find f'(0)=0. Therefore
For p# 0, we can make the change of varialzte p® in Eq.
(Al). This yields 0)=0 if p=#0. (A12)
A a?)
vp? [+ 2/ 24, 92 T formula(93), it ins to show that
F(p,o)= f o(Z)(1—e~ ™ In N(o2/p?) 2 /4)_3_ o prove formula(93), it remains to show tha
z
A4 n
A4 —(p,0)d%p= %yzm N. (A13)
We therefore have to determine the behavior of the function 3a”)
For this purpose, we introduce the function
+oo dz
f<p>=f Jo(2)(1-e P =, (A5) , ,
0 z I(c9)=| F(p,o)dp. (A14)

as p—>24 Clearly, it is not possible to expand the quantity 5 pstituting explicitly forF(p, ) and introducing polar co-
1—e P# which occurs under the integral sign as a powerordinates, we obtain
series ofpZ*, and evaluate the integral term by term. How-

ever, writing the Bessel function in the form +o0 +o 204 dd)
|(0.2):,),2f Pdpf 0(pq))(l e wnInN0'<I>/4)
0 0
1 +1 dt
Jo(z)=—Re| e#t—r—, A6 (A15)
0( ) T 1 \/W ( )

Under this form, it is not possible to interchange the order of
integration. An alternative expression fbfo?) can be ob-

and regarding andt as complex variables, it is possible to tained along the following lines. Writing

choose integration paths along which this expansion will
converge. Using the contours introduced in Sec. Il C, the

+ o +

function f(p) can be rewritten l(0?)= yzfo dpf0 pDIo(p®)g(®)dd, (A16)

1 dt . dz
f = _Re| —— gzt 1_e—pz4)__ (A7) where
(p)=7Re| Tl ( 3
1
P)=(1— — 7nin No2d4/4 —, Al7
We readily verify that the real parts ¢ft and —pZz* are 9(P)=(1-e )<1)4 (AL7)

always negative, so the convergence of Ep) is not dis-
turbed. With these new contours, it is now possible to ex-and integrating by parts with the identity
pand the integrand in a power seriespf*, and integrate
term by term. For our purposes, it is only necessary to con-
- . S . X xJ1(X Al
sider the term of first order in this expansion: Jo(X) ( 31(0)), (A18)
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we obtain
+ o +
I(02)=—72J dpf Ji(p®)Dg’' (P)dD.
0 0
(A19)

It is now possible to interchange the order of integration.
Since

+ 00
f Ji(x)dx=1, (A20)
0
Eqg. (A19) reduces to
+ oo
l(crz):—yzf g'(®)dd = y?g(0). (A21)
0
Hence
n
I(02)= % »2InNo?2. (A22)

This formula is valid for any value ofr, but, for our pur-
poses, we only need the result

in
I’(0)=T'y2|n N. (A23)

Since, by definition,

|'(0)=f

we have proved EqA13).

(p.0)d?p, (A24)

(o?)

APPENDIX B: GENERALIZATION TO INCLUDE A
SPECTRUM OF CIRCULATIONS AND AN ARBITRARY
ISOTROPIC DISTRIBUTION OF VELOCITIES

So far, we have assumed that the system was a ‘“vorte
plasma” consisting of an equal number of vortices with cir-
culation + vy and — y. We shall now indicate how the previ-
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+

- R +o
_“fr|0J|V|OT( v)7(r) (V)

N
x el ®tao-d)g ydzrdzv) .

An(p o) =

(B2)

There is noa priori restriction on the functiorr(vy), but we
shall be particularly interested in the case where the system
is “neutral,” i.e., y=[7(y)ydy=0. It is only in this cir-
cumstance that the velocity distributigB1) may be used.
Otherwise, there is a solid rotation of the system which adds
to the dispersion of the particles.

Expression66) for Ay(p, o) is now replaced by

+ o J‘Jroo f+oc J'+oc
=—=J|vo|=0J|®|=|yl/2aRJ [4f=0

1
AN(P,O')I(E f

(Vo) [ |7y -
% | eite vt o
" 2700\ 22 0
4 N
X dyd?vyd2®d? ) . B3
Lo Agel7dVo ¥ (B3)

Introducing polar coordinates, using identi7) and substi-
tuting for
]2

{

in Eq. (B3), we can easily integrate af to obtain

|vly
27 P2

ous results can be extended to include a spectrum of circu-

lations among the vortices. We shall also relax assumptio
(59 concerning the velocity distribution of the vortices, and
generalize the results of Sec. Il to any isotropic distribution
7(v)=17(|v|) of the velocities. Such a distribution can be
written conveniently in the form

ﬁw=f

If 7(y) governs the distribution over the circulations, it is
clear that Eq(56) has to be modified according to

(Vo) 2
77_005(0 Uo)d Vo.

5 (B1)

1 + oo + oo + o
A Vo) = —f J’ f T(y) (Vv
O Bl S Y D EO L)
TO yz N
xelr®g v (132> dyd?vyd?d | .
X Tyl 707 Jamepa™ 7" M0
(BS)
it is readily verified that
=3 I :
I T 7(Vo) ™
7R? Jy=—=Jvol=0J |0|=|yi27R (N 0)4772@4
X dyd?vod?®=1. (B6)

Therefore, the expression foky(p,o) can be rewritten
equivalently,
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AN(p’U):(l__j_va Jm m/sz V7v)

270
vCIDZ) y
Y

472P?

x| 1-¢eP®J,

N
><d2<1>d2vdy) , (B7)

where we have writterv instead ofvg, as it is a dummy

variable of integration. In the limitN,R—c, with n

=N/7R? fixed, we obtain
A(p,o)=e "P) (B8)

with

coo-[ | |0 | :;Rrww(v())

2
pq’”O( B “’”

-d d?vdd.
D3 Y

X

(B9)

For =0, the functionC(p, o) reduces to

')’2 2
C(p)=-5-INN (p=>0), (B10)
2 2
Y P
C(p)~— W'”P (p—0). (B1Y)
Therefore, the velocity distribution becomes
4 —(4 /ny2in N)V2
W(V)= —=——=—e """ [V=V¢ni(N)],
ny?nN
(B12)
nv2
Y
W(V)= a2V [V=Verit(N)], (B13)
with
o 1/2
ny 12
Verit(N) ~ Eln N| InY4InN). (B14)

These results differ from Eq$34), (49), and(50) simply by
the substitutiony?— 3?2, wherey?= [ 7(y) y?dy is the aver-

age enstrophy.
Writing
C(p,0)=C(p)+F(p,0), (B15)

we obtain
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{1 o)

Fioo=| | [ roaon)

2
Y 2
q)sd‘yd vdd.

(B16)

Following the same steps as in Appendix A, we find that

py 2)(/10) 7225(p), (B17)
where
2= +OOT(|V|)022’7TUdU (B18)
0

is the mean square velocity of the vortices for the isotropic
distribution 7(|v|). Therefore, Eqs(95) and (96) are modi-
fied according to

n2 2
(A2)y=—7 2NN <y ()],
(B19)
) 42y? 4
(ABy=—==V* [V=Veu(N)],  (B20)
Y

and Eqgs(103 and (104 according to

(277V2/n72In N)

T(V)_ [stcrit(N)]
\/In \/
(B21)
\}72
TV)=——=—— [V=Vi(N)]. (B22)
27\Nv3V
The mean duration of the fluctuations is
(T . (B23)
T=——, B23
3\/6 ‘/nvz
and the diffusion coefficient is
1/2
( ) \/ 2\JIn (B24)

For a Gaussian distribution of the velocities, we recover the
results of Sec. Ill, appropriately generalized to account for a
distribution over the circulations.

For p=0, the functionC(p, o) reduces to
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treated by Jimeez[11] and Minet al. [12] using numerical
methods. The theory developed in this paper makes it pos-
¥2 sible to obtain new analytical results.
ddeVdCI) Introducing a cutoff at =a, Eq. (29) is replaced by

{1 e

Integrating by parts and using the identity

oo o (4o “blobs” with finite radius. This problem was previously
cor- [ [ [y
=-0oJ|v|=0

(825) _ »y p ypl2ma 3 d_X
cum=50 |7 oS e

2 J4(X) In the limit N,R—o with n=N/«R? finite, we obtain
f =1, (B26)
0

'}’2P2

Clp)=3g

X

(C2

In| —].
we obtain T o\a
1 __ In the case of vortex blobs, the singularity @0 is re-
C(o)= E|'y|vcr, (B27)  moved and the characteristic functi@y(p) is exactly qua-
dratic. ThereforaN(V) is the Gaussian equatidB4) for all
where V=<V, There is no algebraic tail i_n _the_lim_it cpnsid_ered.
However, the convergence to the limit distributi¢d¥) is
— [t still slow (see[11]) and, in practice, the velocity distribution
v= 0 7(lv))v2mvdo (B28)  can differ substantially from the Gaussian even for large val-
ues of N (note that the formalism presented in this paper

is the average velocity of the vortices. Equati6fB) is  could be used to study the dependence of the velocity distri-

changed to bution with the numbeN of vortices.
o More interesting is the distribution of the acceleratin
A(o)=e (2o (B29) In the case of vortex blobs, E({76) is replaced by
and the Cauchy distributiofv9) to 72 yl2ma s a4 dd
C( 0,) (1_ e~ In No“® /4) — (C3)
1 2 o3
W(A)= I . (B30)
mn?|y|?v? 1. 4n2 |\ After integrating by parts, one obtains
n2| 7|202 Clo)= 71_az(ef(ny“m N/64m3a%)o? _ 1)
We also find
ny—2 + —\/n InN Erf( \/nwln No |o, (C4)
(VOa=7 N [ASA(N)],  (B3D)
where
?’ZA 2
(VAOa=r—== [A=Ac(N)], (832 _ 2 J "o v?
27 y[v Erf(x) 7)o e Ydy (CH
with is the “error function.”
1_ For 0—0, the functionC( o) is quadratic ino,
Acrit(N)~§|')’|nv InN. (B33)
ny*InNo?
. . Clo)~————— (Jo]—0) (C6)
For a Gaussian distribution of the velocities, we recover the 6472a2 '

results of Sec. lll, appropriately generalized to account for a
distribution over the circulations. implying that the distributionW(A) is Gaussian for large
values of the acceleration:
APPENDIX C: CASE OF VORTEX BLOBS

. . - N 16ma?
In reality, the vortices have a finite radiaswhich is not W(A)~ Te—(16"”26‘2/“274'“ NAZ (| A| = +0).
necessarily small. This finiteness is responsible for a maxi- n“y"InN
mum allowable velocitV,,.,~ y/4ma, achieved when two (C7)

vortices are at distance 2a from each other. Higher veloci-
ties are forbidden because the subsequent evolution
marked by merging eventésee, e.g., Sire and Chavanis 2 2
[16]). It is interesting to consider the distribution of velocity (A2) = n~y InN. (C8)
V and acceleratiolA produced by a collection of vortex 16m%a?

gs variance is




506 PIERRE-HENRI CHAVANIS AND CLEMENT SIRE

For o— + oo, the functionC( o) is linear ino,

52
C(a’)~§ ninNo  (|o]— +x), (C9)

and we recover the Cauchy distributiorg) for small values
of |A|. Therefore, the distributioW(A) makes a smooth

transition from Cauchyconcave on a semilog plofor small
fluctuations to Gaussiaronvex on a semilog plpfor large

PRE 62

fluctuations. It is likely that in between the distribution
passes through aexponential tail as observed numerically

by Min et al.[12] for the velocity gradients. Of course, when

a is reduced, the transition between the two regimes occurs
at larger fluctuationgsee Eq.C8)]. According to Eqs(81)

and (C8) the relevant nondimensional parameter to consider
is the area fraction n&. In decaying turbulence, the influ-
ence of an extended core should be manifest at the beginning
of the evolution, whema? is large.
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